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1 Introduction 

 

Introduction 

When looking at articles, blogs, and posts related to real-time capable communi-

cation, they often focus on selected specific details of how "the best" can be 

achieved from a certain aspect of an embedded communication system like CAN, 

CANopen, or real-time Ethernet-based communication. It is crucial to consider 

how these specific details apply to a broader range of applications and their 

unique requirements. Many readers of such articles may question whether they 

are implementing these features correctly, leading to uncertainty. What I often 

miss is setting it all in perspective. If the required responsiveness of your system is 

in the area of 100ms, then you do not need to review in detail every cause adding 

a delay of a single millisecond or less. 

To give an example, in CAN communication, collisions are resolved by prioritiza-

tion. However, without collision, even the lowest priority frame gets immediate 

network access. Therefore, if your system only has a busload of 50% or less and 

some mechanisms are in place that no device can produce back-to-back high-pri-

ority traffic, then discussions about optimizing priorities or managing software 

handlers by priority may become purely theoretical, without significant practical 

application. 

A word on 'safety' and 'security': The importance of these two aspects is increas-

ing in a variety of applications. Adherence to specific safety standards, if required, 

introduces a whole new layer of complexity and consideration. The details of 

these standards and the intricate procedures they require can be extensive. How-

ever, to maintain the scope and length of this article, these subjects will not be 

explored in-depth, and the focus will remain primarily on the subject of real-time 

processing. In the context of timing behavior, it is essential to recognize that if 

your signals require safety or security measures or both, additional metadata will 

be necessary to safeguard the original signal data. This may include redundant in-

formation, counters, timestamps, and various cryptographic checksums. 

With this series of articles, I am taking a "step back" to first find the right perspec-

tive. I start with "Part I: The Clock is Ticking: Selecting the Right Real-Time 

Timeframe" to review an application's requirement – to get an idea of the "ball-

park" we are operating within. 



 
2       

In "Part II: The Demands of Real-Time Communication Systems" we look at the 

different timeframes required by different applications and review what this 

means for the communication system used. 

In "Part III: The Temporal Dynamics of CAN-Based Systems," I apply our findings to 

CAN and CANopen, giving recommendations on "how to use" (configure) the com-

munications to meet the demands found earlier. 

The last article "Part IV: From Theory to Practice: CANopen Source Code Configu-

ration" shows which optimization options are typically available when working 

with CANopen source code, here, our own Micro CANopen Plus. 
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1  The Clock is Ticking: Selecting the 

Right Real-Time Timeframe 

In the world of embedded systems, real-time applications occupy a crucial niche. 

These applications are characterized by their requirement to process inputs and 

produce outputs within a specific timeframe. The accuracy of the results they pro-

vide depends not only on their logical correctness but also on the precise timing 

of their responses. As these systems interact with the physical world, the stakes 

can be high, often involving human safety, product quality, or efficient system op-

eration. Therefore, the responsiveness of these applications becomes a basic as-

pect of their design. 

However, “within a specific timeframe” can be very different depending on the 

application. For the rudder and thrust control of a large ship, this might be a sec-

ond or more. For a high-speed sorting and packaging unit in a cookie factory, it 

might be single milliseconds. And these two cases already show nicely the differ-

ent demands regarding safety: The “slow” commands in the ship need to be much 

more reliable (or safer) than those commands sorting cookies.  
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As you can imagine, the specific 

challenges of implementing real-

time applications often depend on 

the communication channels in-

volved. Are the inputs and outputs 

directly connected to the main pro-

cessing unit, or is an embedded 

communication network neces-

sary? 

As applications tend to grow more 

complex and geographically distrib-

uted, it is impractical to have direct 

connections to every input and out-

put. Instead, many real-time systems rely on remote connections. Sensors, actua-

tors, and other devices might be located far from the central processing unit, 

making some form of communication between them necessary. Often, this also 

means that data has to be transmitted twice within the required timeframe: in-

puts from sensors to the processing unit and secondly the processing units' out-

puts to the actuators. 

All of this brings additional challenges and considerations: Communication chan-

nels introduce delays, or potential data corruption or loss. Designers of real-time 

systems must now account for these factors, ensuring that the communication 

methods used can still meet the system's real-time requirements. In addition, 

these systems must now be able to handle multiple, often simultaneous, data 

streams and manage the prioritization of these streams based on their urgency 

and importance. 

The increasing sophistication and requirements of real-time applications, coupled 

with the growing distance between the processing unit and input/output devices, 

have made the design of real-time systems a multi-faceted and challenging en-

deavor. Such a development demands a deeper understanding of communication 

protocols, network topologies, and error handling mechanisms. Only by address-

ing all these factors can we ensure that real-time systems continue to meet the 

stringent demands placed upon them. 

Before diving into the design process, the first and most crucial question is deter-

mining the required timeframe for a specific application. Are we talking about sec-

onds? Hundreds of a second? Or even milliseconds? Once a system has been fully 
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designed and developed, shortening the timeframe might not be possible, as 

many design decisions would have been based on the initial timeframe estimate. 

After you've established a desired timeframe for the real-time responsiveness of 

the system, I recommend taking some extra time to review it thoroughly. Con-

sider having your boss, customer, or partners sign off on it, as making changes to 

the established timeframe later on can be costly. 

If your application requires that the “the entire input to output” to be included 

into the calculation, then you have multiple times to add up: processing time in 

the input sensor to collect the input and preparing it for transmission, transmis-

sion delay, processing time in the main processor: receiving the inputs (waiting for 

others?), processing them and preparing for transmission to the outputs and on 

the outputs the processing delay of receiving the data and actually applying it. 

In the following, let’s review some application examples sorted by the required 

response times: 

1.1  Apps with Response Times Beyond Seconds 

For applications operating in timeframes of single or multiple seconds, the sys-

tems often don't require special precautions. This is because the delay tolerance 

of these applications is significantly larger than the typical delays introduced by 

communication protocols. Interestingly, even when the control code is executed 

on slower non-real-time operating systems, timely operation is achievable. Chal-

lenges may arise if the operating system is tasked with excessive concurrent oper-

ations, but these situations are generally exceptions rather than the norm. Never-

theless, do not underestimate the consequences: even if in your application the 

realtime timeframe is 1s – what exactly will happen if that 1s is not met? Is that 

just annoying – or will something get damaged – or does the data even need to be 

‘safe’ as otherwise some serious damage or even deaths could occur? 

Solar Tracking of Solar Panels: Solar panels with tracking capabilities adjust ac-

cording to the sun's position. Delays of seconds to minutes are typical in this ap-

plication, ensuring optimal energy capture even with occasional control delays. 

HVAC Systems: Heating, Ventilation, and Air Conditioning systems often incorpo-

rate sensors to modulate temperature and air quality. While immediate adjust-

ments are beneficial, a delay of several seconds is generally well within the ac-

ceptable range. 
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Mining Equipment: In mining operations, large machinery such as conveyors and 

large-scale excavators require multiple seconds to start or stop. Given the scale, a 

delay of a second in system response can be acceptable, especially for non-critical 

adjustments. However, safety-critical functions like an emergency shut-off will 

have more stringent requirements. 

Maritime Applications: Given the relatively slow movement dynamics of large 

maritime vessels, a second of delay for data processing and navigation can be ac-

ceptable. 

Sub-Sea Operations: In deep-sea systems, reliability stands as the foremost prior-

ity. While managing seabed operations—from pipeline control to equipment ad-

justments—commands may take multiple seconds to reach their destination and 

cause the desired action. 
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1.2  Apps with Response Times of 100ms 

In many scenarios, especially those centered around human-machine interaction, 

response times in the ballpark of 100 milliseconds are crucial. This range is rooted 

in the fundamental limits of human perception and reaction. When a system re-

sponds within this timeframe, the interaction feels nearly instantaneous to the 

user, promoting a sense of seamless control and real-time feedback. Given that 

the average human reaction time to visual stimuli is greater than 100ms, systems 

that operate within a 100ms timeframe are within the range to feel immediate 

and intuitive. To achieve these response times, you generally don't need to take 

any special measures regarding your communication channel. Even at relatively 

slow communication speeds like 100kbps this can be reached. 

Vehicle Instrumentation and Controls: In a variety of human-controlled vehicles, 

such as cars, forklifts, cranes, and agricultural vehicles, a myriad of displays and 

controls—from touchscreens to dials—rely on swift feedback. This ensures the 

operator remains informed and in control. Sending controls via switches or joy-

sticks, or receiving real-time feedback from sensors, all need to occur within this 

timeframe. 

Industrial Machine Interfaces: Operators at manufacturing plants interact with 

complex machinery through control panels. Quick feedback is essential, ensuring 

the user's commands translate to machine actions almost instantly, which in turn 

enhances operational safety and efficiency. Where it takes longer to activate a 

command, some immediate vis-

ual feedback should be provided 

to signal the operator that the 

selected function is now about to 

be executed. 

Medical Equipment: Devices 

such as patient monitors and 

specific diagnostic tools require 

timely feedback when healthcare 

professionals adjust settings or 

input commands. This prompt 

response ensures both patient 

safety and the confidence of 

healthcare professionals. 
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1.3  Apps with Response Times of 10ms 

For applications demanding a response time around 10 milliseconds, precision is 

imperative. These timings significantly surpass the boundaries of human percep-

tion, resulting in systems often responding or adjusting even before a human can 

register the event. Consequently, the foundational systems must operate with un-

paralleled efficiency and consistency. Realizing these rigorous timings demands 

detailed planning, balance between speed and priority, but potentially also go 

deep into the software layers, including drivers and firmware, that process the 

data. With precise optimization, these systems exhibit the ability to react 

promptly, reinforcing safety, preserving functionality, and assuring peak perfor-

mance. 

Driver Assist Systems: Advanced Driver Assistance Systems like traction control, 

lane-keep assist, and anti-lock brakes are paramount in delivering quick re-

sponses. These systems sense and react to instantaneous shifts in vehicle dynam-

ics, often in situations where any delay could lead to potential accidents. 

Industrial Robotics: In state-of-the-art manufacturing setups, robotic arms and 

their allied machinery are tasked with instantaneous adjustments. Such prompt-

ness ensures meticulous precision, safeguards the sanctity of the production pro-

cess, and curtails errors. 

Emergency Shut-Off Systems: In various control settings, the quick actuation of 

emergency shut-off systems is crucial. Whether responding to machinery mal-

functions, hazardous leaks, or any unpredictable scenario, the swift activation of 

these systems can prevent significant damage, financial losses, and more im-

portantly, protect human lives. 

1.4  Apps with Response Times of single Millisec-
onds 

For applications that demand response times in the order of single milliseconds, 

the capabilities of several communication networks are stretched to their limits. 

Keep in mind that this is not about total throughput (typically only a few bytes are 

exchanged here) but get these bytes to the destination quickly. Achieving such 

rapid reactions requires a review of every facet of the system—from the configu-

ration of the network to the underlying code—to be optimized. When getting into 

such demanding requirements, a comprehensive evaluation should be conducted 
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to determine if the chosen communication protocol is indeed the most suitable 

solution or if other solutions are available to complete the tasks at hand. 

High-Speed Motion Control: In specialized industrial setups, machinery requires 

instantaneous adjustments based on rapid feedback loops. Such applications 

could involve fine-tuning motor speeds, swiftly actuating valves, or modulating 

high-speed actuators in real-time. 

Advanced Robotics: Especially prevalent in high-precision tasks, these robots 

might be involved in operations like placing delicate electronic components onto 

a PCB at accelerated speeds, where the slightest delay can lead to significant er-

rors. 
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Airbag Deployment: In vehicular safety systems, the time between detecting a 

potential crash and deploying an airbag can be mere milliseconds. Such a rapid re-

sponse is crucial to ensure the safety of the vehicle's occupants, where every mil-

lisecond counts towards mitigating injury. 

1.5  Conclusion Part I and Outlook Part II 

As we have seen in this first part of our series, applications across various sectors 

have different response time requirements, ranging from seconds to mere milli-

seconds. The ability of a communication system to meet these needs is critical to 

achieving optimal performance and efficiency. 

However, understanding these response time requirements is only one part of the 

puzzle. In the upcoming second part of this series, I will go deeper into the specific 

demands placed on a communication system to meet requirements for real-time 

capable communication. We will explore the technical aspects that impact com-

munication speed, latency, and arbitration, including considerations such as net-

work architecture, bandwidth, and data processing capabilities. Furthermore, we 

will examine the trade-offs and compromises that must be made when selecting a 

communication system that strikes a balance between speed, complexity, and 

cost. 
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2  The Demands of Real-Time Communi-

cation Systems 

The ever-increasing complexity and demands of modern real-time applications 

necessitate robust and reliable communication systems. As established in the first 

part of this series, these applications span a wide spectrum of response time re-

quirements, from seconds to milliseconds, and their success is often contingent 

on the precise timing of their responses. Consequently, the chosen communica-

tion system must be capable of meeting these stringent timing constraints. How-

ever, achieving the desired real-time capabilities is not the sole consideration. In 

many cases, these systems also need to ensure the safety of users, equipment, 

and the surrounding environment. Additionally, given the growing threat land-

scape, ensuring the security of these communication systems has become equally 

critical. Balancing these requirements—real-time responsiveness, safety, and se-

curity—is a multifaceted challenge. 

In this second part of our series, we investigate the specific attributes and consid-

erations that make a communication system capable of fulfilling these demands. 

Over time, the demands on real-time communication systems have evolved and 
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become more stringent. In the early days, the primary focus was on achieving 

real-time requirements with a reasonable level of reliability. It was often deemed 

sufficient if the system could process and transmit data within the specified 

timeframes, even if occasional errors occurred. As technology advanced and sys-

tems became more sophisticated, the need for safety became apparent. "Some-

what reliable" was no longer adequate, especially for applications where human 

safety, product quality, or system operation was at stake. To address these con-

cerns, specific protocols were developed to ensure that real-time systems could 

operate safely, even in the face of faults or disruptions. 

The importance of safety grew, particularly in critical applications such as trans-

portation or medical devices. More recently, as real-time systems increasingly be-

came interconnected and even accessible over the internet, security emerged as 

another crucial consideration. With the potential for cyber-attacks and unauthor-

ized access, it became necessary to safeguard not only the data but also the integ-

rity and availability of the communication system itself. 

Today, a comprehensive real-time communication system must meet all three cri-

teria: real-time responsiveness, safety, and security. It is no longer advisable to 

start from scratch when designing an embedded communication system for any 

real-time application. Once, it was quite common for developers to take an ad-

hoc approach, such as repurposing one of the serial ports to share it among multi-

ple nodes, effectively creating an RS485-style network. However, this approach 

does not accommodate the increasing complexity of real-time systems. 

2.1  Is There a Best Fit?  

In German, there's a saying "Es gibt keine eierlegende Wollmilchsau," which can 

be translated to "there is no one-size-fits-all solution" or, more literally, "there is 

no egg-laying wool-milk pig." This saying applies here as well. Regrettably, there is 

no single networking technology that is universally suitable for all applications. 

Each application has its unique set of requirements and constraints, making it 

necessary to carefully evaluate and select the appropriate communication tech-

nology and protocols. Therefore, it is essential to consider the specific needs of 

the application and match them with the most suitable networking technology 

available, taking into account factors such as required throughput, real-time re-

sponsiveness, safety, and security. 
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2.2  The Basics: How Much Data, How Often?  

First, assess the overall architecture of your system. In addition to real-time re-

quirements and the timeframe within which a complete control step must be exe-

cuted, consider the total number of inputs and outputs required, their distances 

apart, and the number of signals and their data lengths that need to be ex-

changed within each timeframe and between devices. In general, it is not advisa-

ble to push any system "to its limits," so any networking technology you choose 

should have enough capability to accommodate your application's growth over 

time. 

2.3  Are There Safety and Security Requirements?  

Once you've established the applicable timeframe for your application, it is crucial 

to determine what safety and security measures are necessary. If your application 

must adhere to specific safety standards or certifications, your choices regarding 

communication networks will automatically narrow. For this article, we focus on 

the real-time requirements. When conducting your research, double-check the 

latest developments—all active fieldbus organizations and committees are contin-

ually working on improving both safety and security. 

2.4  Are There Synchronization Requirements?  

Consider whether any signals require synchronization, meaning that inputs should 

be captured at the same moment in time. Synchronization is critical for applica-

tions where multiple inputs are combined. In real-time communication systems, 

synchronization plays an important role in ensuring accurate data transmission 

and interpretation. Some applications demand synchronization due to their na-

ture (e.g., syncing multiple manipulators working on the same material simultane-

ously), while other effects might be more subtle: Consider a scenario where an 

analog sensor generates input data every 100ms based on its internal timer. The 
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transmission of this data onto a network also occurs every 100ms, triggered by a 

separate network timer. If these timers are not synchronized, they may gradually 

drift apart, leading to two possible scenarios: 

1. Duplicate Data Transmission: If the network timer's window is shorter 

than the sensor's, the sensor may not have generated new input data by 

the time the network is ready to transmit. In this case, the same data 

could be transmitted twice. 

2. Data Loss: If the sensor's timer window is shorter than the network's, a 

new value may be generated before the previous one has been transmit-

ted. This situation can lead to skipped or lost data.  

The impact of these scenarios greatly depends on the signal and its usage. For in-

stance, if the value represents temperature and the main processing unit only 

needs to know if it falls within the correct range, these scenarios have no effect. 

However, if it is a counter or a rapidly changing signal representing a wave, miss-

ing or duplicated data may have serious consequences. 

2.5  Other Considerations  

When selecting a real-time communication system, there are many additional 

considerations: Are off-the-shelf products, development, and diagnostic tools 

readily available? Can it easily integrate with existing (or planned) systems? If 

hard real-time of single milliseconds is a requirement, such integration may need 

to go "deeper" into a system, potentially requiring custom software at the lowest 

levels of the hardware. 

2.6  Too Many Choices… 

Understanding the specific requirements of your application—real-time respon-

siveness, safety, security, system architecture, and synchronization—can guide 

you in selecting a suitable communication network. If you start at zero, a potential 

starting point for gaining an overview of available fieldbusses is the Wikipedia en-

try titled "Fieldbus." However, note that this list captures only a fraction of the 

available fieldbusses. The domain of industrial communication networks is vast 

and continuously evolving, with many fieldbusses, some not even officially stand-

ardized. Beyond the widely-recognized fieldbusses, many networks, often crafted 

by manufacturers or consortia, cater to specific applications or industries. They 

might offer distinct features, specialized protocols, or proprietary technology tai-

lored to certain application needs. 
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For instance, the Controller Area Network (CAN) is a versatile communication pro-

tocol supporting numerous applications through its specialized protocols. Proto-

cols like J1939 cater to commercial vehicles (like construction, agriculture), stand-

ardizing message formatting and signaling to facilitate manufacturers in crafting 

interoperable components. NMEA 2000, by the National Marine Electronics Asso-

ciation (NMEA), aids the 

integration of marine elec-

tronics, streamlining the 

configuration and man-

agement of intricate ma-

rine systems. CANaero-

space, designed for aero-

space, meets the distinct 

demands of avionic sys-

tems, ensuring reliable 

data exchange in aircraft.  

The CANopen protocol, with its flexibility, boasts many device and application 

profiles, such as those for elevators, emergency vehicles, and CleANopen for 

waste collection vehicles. These profiles determine the communication behavior 

and data structures for devices or entire applications, simplifying the develop-

ment process. 

Moving beyond CAN, some 10+ different solutions exist for Ethernet-capable real-

time communication, each targeting varied applications. As a general rule, if your 

application's real-time requirement is roughly 100ms or more, you have a multi-

tude of choices since most embedded communication networks or fieldbus can 

fulfil these demands, even for more extensive systems. However, for vast machin-

ery (spanning several hundred meters of cable and beyond), scrutinizing commu-

nication runtime and throughput is essential. 

For stringent real-time requirements, as short as 10ms or even less, it's imperative 

to diligently review which network technologies can satisfy your needs. Typically, 

a time-triggered communication system (available on CAN, Ethernet, and other 

platforms) is the most deterministic. Here, each signal with real-time require-

ments is allocated an exclusive timeslot, ensuring predictable signal transmission. 
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2.7  What's Next? 

As an expert in CAN and CANopen communications, the next part III of this series 

will focus on CAN and CANopen as examples for the many embedded communica-

tion systems available. I will explore its suitability for diverse systems with real-

time requirements, highlighting achievable response times, areas demanding me-

ticulous attention, and situations that push boundaries, suggesting the evaluation 

of alternatives. 
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3  The Temporal Dynamics of CAN-Based 

Systems 

After reviewing the basic requirements for selecting a real-time capable embed-

ded communication system, I will now examine the real-time capabilities and limi-

tations of CAN and CANopen in greater detail. 

The Controller Area Network (CAN) protocol serves as the foundation for numer-

ous applications across a wide range of industries, each with its own distinct real-

time demands. Prominent examples like CANopen and J1939 highlight the diverse 

adaptations of this protocol to meet specific needs. It's important to note that the 

real-time requirements for these applications are not uniform across the board. 

While some applications require reaction times measured in milliseconds, many 

others operate effectively under more relaxed criteria. Factors such as physical 

constraints, network topologies, and computational tasks play a crucial role in 

shaping these requirements. As we explore tighter real-time constraints, the com-

plexity of communication configurations and code handling increases. However, 

when real-time requirements are more relaxed, it opens up opportunities for sim-

pler, more streamlined system designs without sacrificing functionality or reliabil-

ity. 

Although bothy safety and security have been addressed with (by CANopen Safety 

and CANcrypt) there is currently no standardized solution that provides both. The 

CiA (CAN in Automation) user’s group currently has multiple working groups re-

viewing various aspects of both safe and secure communication with CAN, CAN FD 

and CAN XL. 
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3.1  Real-Time Capabilities of CAN 

CAN's real-time effectiveness is closely tied to its communication speed, and fur-

ther affected by its priority-based arbitration mechanism. Calculating CAN frame 

transmission times is not a straightforward task; the time depends on both the 

number of data bytes and their content. This complexity arises because stuff bits 

may be added to a frame depending on its data. Therefore, the following deter-

mined values should be considered as approximations, providing a general sense 

of the scope at hand. 

It's important to remember that your maximum bitrate also depends on the phys-

ical topology of the cabling, and depending on your application, the total transfer 

required for a single control cycle might include two transmission paths: one for 

input data to the control unit and another from the control unit to the outputs. 

Though I focus on CAN here, most of the following considerations also apply to 

the CAN FD (Flexible Data Rate) and CAN XL variants. Both of these protocols fea-

ture a dual bitrate mechanism, further enhancing their data throughput capabili-

ties. However, when discussing timing-related dynamics, most of the considera-

tions I have outlined predominantly apply to the "nominal bitrate." This founda-

tional bitrate essentially establishes the pace for control information such as arbi-

tration, acknowledgment, and error signaling. For those using CAN FD and CAN 

XL, it's crucial to be aware of the additional complexities introduced by the "data 

phase bitrate," which governs the transmission of the actual data. One of the key 

concerns in these systems is determining the maximum duration a lengthy mes-

sage might occupy the bus and how much longer this delay might be compared to 

the longest classical CAN frame with 8 bytes. 

At its maximum speed of 1Mbps, CAN allows for the exchange of more than ten 

frames within a millisecond. Conversely, at a modest rate of 125kbps, it averages 

around one frame per millisecond. Beyond mere transmission times, signals or 

frames can experience delays if higher-priority communication is in the queue. To 

put it simply, the worst-case transmission time would be the sum of the frame's 

own transmission time and the delay expected from the longest sequence of 

higher-priority traffic in the system. This assumes that all communication happens 

on a single CAN bus. If signals need to be forwarded via bridges or gateways, de-

lays become longer and even more challenging to predict. 

The system of message prioritization can be a double-edged sword. However, 

there is a mitigating factor: by strategically limiting the duration of sequential 
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high-priority traffic, even communications with the lowest priority can be dis-

patched with minimal delay. This approach ensures consistent and timely data ex-

change throughout the system. 

Looking at CAN (and the FD and XL variants) by itself, it is clear that “as is” it is not 

deterministic. A single device producing high priority frames can block the com-

munication for all others. To make CAN deterministic, we need to ensure a con-

trolled frame triggering – when may which CAN ID be used. To activate CAN's real-

time capabilities, consider the following design goals. While these guidelines may 

vary based on application specifics, they serve as a reliable starting point: 

A) Aim to keep the overall busload at a level where even low-priority frames have 

sufficient time to access the bus. While the exact threshold can vary by applica-

tion, my initial recommendation is to stay below 75% busload (less if communica-

tion is purely change-of-state-based).  

B) Ensure that no individual node can generate an extended stream of consecu-

tive messages. Some drivers offer a transmission "throttle" to limit the maximum 

transmission rate.  

C) For those seeking finer control over transmission timing and sources, consider 

the SYNC mode of CANopen. This mode enables trigger messages, providing en-

hanced control over transmission schedules, allowing trigger modes like those 

used by time triggered systems. 

3.2  Mastering the Temporal Dynamics of CAN-
Based Systems 

After exploring the various use cases and their respective temporal demands of 

CAN-based systems, you can imagine that matching CAN configurations to specific 

time requirements is both an art and a science. The following table summarizes 

some of the main numbers and factors to consider. The first section of the table 

gives you a summary of the CAN timings and throughputs that you can expect at 

various bitrates – this is all for classical CAN using 11bt CAN message identifiers. 

The fact that even at the lower bitrates we are still talking about potentially thou-

sands of CAN frames per second never stops amazing me. There is sooo much 

room for communication that one can easily grasp that with some well-defined 

parameters on how to use all this “space” one can very well design real-time ca-

pable systems. 
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TABLE: BALLPARK FIGURES FOR TRANSMISSION DELAYS 

The next section of the table shows potential transmission delays and depends on 

many factors. Therefore, it is only a rough estimate for a specific use case, you 

need to adapt it to your own use case. The first row shows the delay even the 

highest priority will have, if the bus is currently in use (arbitration already started, 

transmitter is too late to join). Transmission has to wait, until the current frame 

completed. The second row shows an arbitration delay – if there are other devices 

also trying to transmit a frame, how long do we have to wait? Here we show the 

delay for 5 other frames currently pending for transmission and having a higher 

priority followed by a line of further delays, if a throttle mechanism is used pro-

tecting from back-2-back transmissions. Further on in this article we will review 

what can be done if the sum of delays shown is unacceptable in your application. 

The last section of the table shows the potential processing delays caused by exe-

cuting various code on the device handling the CAN communication. Here we as-

sume that a modern 32bit MCU with integrated CAN interface is used running at 

80Mhz or faster. In such environments, the code execution directly related to 
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handling the CAN frames is typically marginal. Potential delays come from “what 

else is happening” on that MCU. 

Translating this knowledge into real-world system performance requires actiona-

ble strategies and considerations. With the previously established benchmarks 

from part I—seconds, 100ms, 10ms, and single milliseconds—as our guideposts, 

let's review practical recommendations for optimizing your CAN-based systems. 

3.3  Mastering CAN Applications with Response 
Times Beyond Seconds 

In the domain of applications op-

erating with delays stretching 

into seconds or even minutes, 

designing CAN-based systems to 

meet these response times is not 

particularly challenging. Interest-

ingly, even a device burdened by 

sub-optimal drivers or firmware 

might still be suitable, as even 

sub-optimal drivers will even still 

perform within 10 to 100 of mil-

liseconds. 

However, when working with 

devices that rely on non-real-

time operating systems, the challenge lies not so much in countering communica-

tion delays, but rather in upholding consistent performance and avoiding the 

worst-case possible delay. Regular testing and thorough monitoring are essential 

to ensure that these devices never falter in allocating the necessary resources for 

seamless CAN communication. It is also crucial to proactively curb any potential 

system disruptions. Simple yet effective measures, such as ensuring the absence 

of updates or other resource-draining operations during active communication 

periods, can strengthen the system's responsiveness and reliability. 

3.4  Mastering CAN Applications with Response 
Times of 100ms 

This domain is where the potential of CAN, in synergy with higher-layer protocols 

like CANopen, truly comes into play. The CANopen PDO (Process Data Object) 
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communication mechanisms inherent in CANopen provide users with flexible con-

trol, simplifying the configuration of message content and triggering. These PDOs 

facilitate real-time data exchange between nodes, optimizing communication effi-

ciency. 

At this response time, CAN ID assignment and overall busload remain critical, but 

not overwhelmingly so, as they are unlikely to cause delays approaching any-

where near 100ms. The system architecture should be designed such that even 

messages with the lowest priority have timely bus access, ensuring their transmis-

sion within the stipulated timeframes. As we navigate this middle ground, it be-

comes increasingly important to review potential high-priority message bursts. 

Back-to-back high-priority transmissions can dominate the bus, posing risks of de-

lays for lower-priority messages. Effective strategies for avoidance or control, 

such as limits on what each node can transmit per timeframe or synchronized 

triggering, can be employed to mitigate these bursts, ensuring more predictable 

and harmonious bus communication, even as the system scales. 

While many non-real-

time OSs can still achieve 

a 100ms response, it is 

advisable to lean towards 

an RTOS (Real-Time Oper-

ating System) in such sce-

narios (if an OS is re-

quired at all, many simple 

IO devices typically do not 

have an OS at all). Using 

an RTOS aligns naturally 

with the demands of a 100ms response window. If a non-RTOS is chosen, rigorous 

and extended testing becomes imperative to ensure the OS consistently meets 

the desired response times under all conceivable operational circumstances. 

Within this 100ms response time framework, the software and firmware require-

ments remain relatively forgiving. Specific optimizations are often unnecessary; 

even drivers or stack implementations deemed sub-optimal in high-performance 

environments (for example not taking advantage of CAN controller hardware fea-

tures for advanced filtering and buffering) can adequately serve the purpose. 
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3.5  Mastering CAN Applications with Response 
Times of 10ms 

As we move into the 10ms response time zone, precision and control over every 

system component becomes essential. This is where detailed scrutiny of network 

data flow is essential. 

Time-triggered networks, optimized for hard real-time applications, are often the 

preferred choice in such demanding scenarios. The CANopen SYNC mode is an ef-

fective approach to mimic communication behavior as used in time-triggered 

communication systems. By utilizing SYNC triggering messages, it enables specific 

nodes to transmit their associated PDO messages at precise moments, bringing 

predictability and consistency to system communication. 

While a Real-Time Operating System (RTOS) might seem ideal for such tight timing 

requirements, it comes with its set of challenges. An RTOS offers a range of con-

figuration options, and managing these tasks requires careful coordination. 

Within the tight 10ms window, the process involves a sensor sending its current 

data, a control device with an RTOS receiving and processing this data, and then 

acting upon it. 

However, simply implementing an RTOS does not guarantee the desired out-

comes. Task prioritization and configuration must align perfectly with the system's 

stringent timing requirements. Additionally, a detailed review of driver functional-

ity, firmware, and stack structures is crucial. Potential issues, such as priority in-

version where a low-priority message in the queue might delay a higher-priority 

one, need to be addressed. Highly optimized drivers can address priority inver-

sion, but this may cause changes in transmission sequences. A change in transmis-

sion sequences can be problematic for certain higher-layer protocols and needs to 

be reviewed carefully. 

3.6  Mastering CAN Applications with Response 
Times of 1ms 

Venturing into the 1ms response time territory for CAN-based applications is akin 

to treading on the edge of the protocol's capabilities. These applications truly 

push the boundaries, requiring an unparalleled level of optimization and attention 

to every detail. 
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At this threshold, conventional approaches and tools often prove inadequate. 

Even some RTOSs, which typically excel in managing real-time tasks, may struggle 

to consistently adhere to this tight window. This necessitates reliance on micro-

controller-specific implementations, where most tasks are handled directly within 

interrupt service routines, bypassing the typical layers of an RTOS.  

The extreme precision re-

quired at this level means 

that many system configu-

rations may need to be 

hard-coded, potentially 

bypassing higher-layer 

protocol stacks like CANo-

pen that would otherwise 

delay processing. This also 

helps avoid potential de-

lays introduced by config-

uration handling, ensuring 

maximum predictability. 

Every component, mes-

sage, and byte transmit-

ted on the network must 

be judiciously managed. 

Given the stringent requirements, if a 1ms response time is a necessity for your 

application, it is wise to review if other communication solutions beyond CAN 

might be better suited to your needs. This domain requires significant commit-

ment in terms of development time, testing, and optimization. If this endeavor is 

taken on, one should be fully prepared for a time-consuming project journey. 

3.7  Concluding the Temporal Dynamics of CAN-
Based Systems 

The exploration of the temporal dynamics of CAN-based systems has underscored 

the adaptability and capabilities of the CAN protocol across various response time 

requirements. For applications with response times extending beyond seconds, 

there is less emphasis on precise timing, and decisions regarding CAN ID usage, 

higher-layer protocols employed, or the operating system selected generally have 

a less pronounced impact on performance. 
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However, as we reach into tighter time constraints of 100ms and 10ms, system 

design considerations become of greatest importance. These include total bus 

load, message priorities, and the strategic employment of functionalities like CAN-

open's SYNC mode. When navigating the demanding 1ms response time domain, 

every element of the system requires meticulous attention and may even prompt 

a re-evaluation of the network system selected. 

In conclusion, understanding the balance between application requirements, the 

inherent strengths of CAN, and the related temporal constraints is vital. It's this 

knowledge that empowers CAN system designers to make informed decisions 

across diverse temporal scenarios. 

In the next and last article of this series, we will go deep into the technical details, 

examining the configuration and optimization options available with CANopen 

source code solutions, such as Micro CANopen Plus. We will provide practical in-

sights into how the inherent strengths of CANopen can be harnessed to meet a 

broad range of real-time application demands. This final part will offer readers a 

tangible guide to optimizing real-world CANopen implementations for shortest 

processing times. 
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4  From Theory to Practice: CANopen 

Source Code Configuration 

As we have seen in the previous parts of this series, the adaptability and fine-tun-

ing of CANopen systems play a crucial role in meeting real-time application de-

mands. In this final instalment of our series, I show you technical details of CANo-

pen source code configuration, shedding light on the various ways it can be opti-

mized for efficient real-time performance. 

Throughout this article, I will examine specific examples using EmSA’s  Micro CAN-

open Plus source code. These examples will illuminate the process of configuring, 

optimizing, and fine-tuning a CANopen stack to cater to advanced temporal re-

quirements and possible system constraints. While my focus is on Micro CANopen 

Plus, it's worth noting that the principles and methods I will explore here are likely 

to work with other CANopen source code implementations in a similar way.  

Whether you are an experienced CAN system designer looking to sharpen your 

optimization skills or a newcomer seeking to understand the nuances of real-time 
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CANopen configuration, this part aims to provide comprehensive insights and 

guidance, translating the theoretical knowledge we gained into practical imple-

mentation. 

4.1  Different CANopen PDO Configurations and 
their Impact on Response Time 

The configuration of CANopen PDOs (Process Data Objects) plays a critical role in 

determining the response time in various applications. Depending on the required 

response time and the necessity to synchronize signals across multiple nodes, dif-

ferent PDO triggering mechanisms can be applied. 

4.1.1  Response Time of 100ms 

For applications where the required response time is 100ms or longer, there are 

typically two configuration methods that work well (and can also be combined): 

• PDO Triggering by Event Time (Cyclic Transmission): Here, the PDOs are 

transmitted cyclically at specified time intervals, such as every 50ms. This 

periodic transmission ensures consistent response times. 

• Change of State (COS) Detection with Inhibit Time: This configuration 

transmits PDOs based on changes in state, with a minimum time (inhibit 

time) between transmissions. This inhibit time ensures that a toggling in-

put does not produce back to back messages. 

 

PDO CONFIGURATION WITH CANOPEN ARCHITECT 

4.1.2  Smaller Response Times or Synchronized Signals Across 
Multiple Nodes 

For applications requiring smaller response times or where there is a need to syn-

chronize signals across multiple nodes, the SYNC mode becomes the preferred 

method: 
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• SYNC Mode: In this configuration, one SYNC producer generates a SYNC 

CANopen message at stable, repeating intervals, such as every 10ms. 

This SYNC message serves as a triggering mechanism, used by all devices 

in the network to apply data synchronously, at the same time. 

4.1.3  Advanced SYNC usage 

When using the CANopen SYNC mode, there are two advanced features that you 

can take advantage of. First, most SYNC consumers allow the configuration of the 

SYNC CAN message identifier to be used. So you could configure a system to use 

multiple SYNC trigger messages and select which devices react to which trigger. 

Secondly, the latest version of CANopen supports the use of SYNC with an inte-

grated configurable counter. As an example, this could be configured to count un-

til 4. On the SYNC consumer side, you can configure the count value that each 

consumer listens to, again providing the option of grouping devices to react on 

specific SYNCs on the system. 

Choosing the right PDO configuration is vital for achieving the lowest response 

times. While cyclic transmission and COS detection with inhibit time are suitable 

for more relaxed response time requirements, the SYNC mode becomes essential 

when handling tighter time constraints or needing to synchronize multiple de-

vices. For more details on these different trigger mechanisms and how they can 

be combined, see our video https://www.youtube.com/watch?v=vxi5awte5eo 

4.2  Generic Data flow in a CANopen Protocol Stack  

On the lowest hardware level, a CAN controller will be receiving CAN frames. De-

pending on filters, these might be placed into pre-selected buffers or queues, and 

an interrupt signal will be generated. The processor handling the CAN controller 

starts processing the "CAN receive interrupt service" – typically part of a proces-

sor-specific driver. A generic driver will now simply pass on the CAN data to an-

other software queue for later processing; I will discuss advanced options later. 

At any time, the application program might update some of the process data to 

be transmitted via CANopen. 
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To keep the CANopen stack alive, there will be a function, such as "Pro-

cessStack()", that needs to be called frequently (for example, simply in a "main 

while(1) background loop"). When called, this function typically first checks if 

CANopen messages were received; if so, they are processed. If the data involves 

updating process data, then there is typically a callback to inform the application 

that new process data has arrived.  

When all received CANopen messages are processed, the function checks if there 

is anything to transmit. It may detect that outgoing process data was modified by 

the application, and depending on the configuration of timers and transmission 

mode, initiate the transmission of a corresponding CANopen message. 

Such transmissions are typically passed to the driver level, possibly into a transmit 

queue, and it depends on the driver configuration when exactly this CANopen 

message will be passed to the CAN controller for transmission. 

4.3  Basic configuration and control options 

Unless the required processing and response time is smaller than 100ms such a 

data flow works good enough for most applications. If required response times 

get smaller, you should start looking into possible optimizations. When reviewing 

the generic data flow above, possible optimizations include: 

4.3.1  CAN Driver Optimization for Receive 

Many default drivers supplied by chip manufacturers (or even CANopen stack pro-

viders) might not take full advantage of the specific features of a CAN controller. 

One of the first possible optimization checks is to ensure that where possible, 

hardware receive filtering and hardware receive buffers or queues are utilized, 

thus eliminating the need for a long (delaying) software receive queue. 
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4.3.2  CAN Driver Optimization for Transmit 

Before reviewing this, consider what is more critical to your application – whether 

this device can transmit as many CAN frames back-to-back as possible, or whether 

the transmission should be somewhat throttled to ensure that no single device 

can produce too long a period of high-priority back-to-back traffic. If it should be 

throttled, consider implementing a transmit trigger based on a timer, such as be-

ing able to transmit one CAN frame every millisecond (our default driver uses the 

1ms timer interrupt for this). 

4.3.3  Considerations for "ProcessStack()" 

A typical question regarding "ProcessStack()" is how often it should be called and 

what the worst-case execution time is. Some prefer to call it from a fixed timer in-

terrupt instead of the background loop. There is no generic answer to these ques-

tions. In our Micro CANopen Plus implementation, we try to keep the execution 

time short by NOT executing all pending CANopen tasks but only the most vital 

ones. How often it should be called depends heavily on the local device's commu-

nication. Our Micro CANopen Plus implementation, however, has a slick feature 

here: with every call, only the 

most critical pending tasks of the 

CANopen stack are performed. 

Producing the heartbeat message 

is always the least important task. 

Therefore, by monitoring the de-

vice’s heartbeat signal's accuracy, 

you can determine if calls to "Pro-

cessStack()" occur often enough. If 

there are not enough calls to "Pro-

cessStack()", the heartbeat be-

comes slower than specified, or it 

may not be transmitted at all. 

4.3.4  Note on Return Value 

Another important factor is the function's return value. It returns TRUE when a 

pending CANopen task was executed, and FALSE when there is no CANopen task 

pending. If you want to ensure that all pending CANopen tasks are executed in 

your code, simply use: 



 
31 From Theory to Practice: CANopen Source Code Configuration 

while(ProcessStack()) 

{ 

} 

  

This will keep re-calling the function until all pending CANopen tasks have been 

executed. 

4.3.5  Direct Task Trigger 

The function "ProcessStack()" serves those who prefer not to go into the details of 

all the CANopen tasks executed from within. For further optimization, an applica-

tion can bypass calling this function and directly invoke the dedicated CANopen 

tasks: "ProcessStackRx()" and "ProcessStackTick()". 

• Sub-task "ProcessStackRx()": This task handles processing a received 

CANopen message. For an optimized call, it would ideally be initiated di-

rectly from the CAN receive interrupt or triggered by some signal set in 

the CAN receive interrupt. 

• Sub-task "ProcessStackTick()": This task checks if the process data to be 

transmitted has changed (or was triggered for transmission) and if any 

actions based on the millisecond timer need to be taken. The most effi-

cient way to call this is only after process data has changed or the milli-

second timer has incremented. 

This approach provides a more refined control over the execution of specific tasks 

within the CANopen stack, allowing for more precise tuning of performance and 

responsiveness. 

4.4  Bringing together CAN Driver, CANopen Stack 
and Application 

On most 32-bit-based microcontrollers, the enhancements discussed so far are 

suitable for bringing the total response time down to a range of 10ms to "a few 

milliseconds." This can be achieved without requiring optimizations that lead to a 

fully custom implementation that might be challenging to maintain. These optimi-

zations were confined to leveraging individually triggered CANopen stack pro-

cesses when needed. 

In general, this can be taken further. However, making changes at such an intrin-

sic level in a system can make it much more challenging to maintain or port to a 

different architecture when necessary. Therefore, the following is more to 
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illustrate "what is theoretically possible," pushing optimizations beyond the point 

where a system remains easy to test, maintain, and port. 

On the lowest hardware level, review if your CAN controller is configured to di-

rectly create a CAN receive interrupt with the reception of the SYNC message and 

if you can easily detect the difference to any other CANopen message (e.g. own 

filter/receive buffer). 

The only reasonable CANopen PDO communication mode for further real-time im-

provements would be the CANopen SYNC mode. If that is used and we concen-

trate on optimizing it, then the previous other optimizations might become re-

dundant. 

Focusing on SYNC optimization would require us to modify the CAN receive inter-

rupt service routine to directly call the CANopen stack function(s) responsible for 

SYNC handling when a SYNC signal is received. In the case of Micro CANopen Plus, 

this would be the function “HandleSync()”. When executing this from within the 

interrupt service routine, please keep in mind: 

• Not to store this SYNC in the regular receive queue (we already process 

it). 

• That for both SYNC-related transmit and receive data, call back functions 

to the application will be called—still executing at the interrupt service 

level. 

• When using an RTOS, a better solution would be to set a trigger signal in 

the interrupt that SYNC was received, subsequently triggering the execu-

tion task immediately after the interrupt has completed. 

With such a modification, a response time within a millisecond is achievable. If all 

devices participating in the SYNC communication implement the SYNC handling 

with equal optimization, the variation among the devices (e.g. when they each ap-

ply their outputs synchronusly) can be as low as a few microseconds. 

Nevertheless, these are extreme values that have been observed to work in test 

and lab environments. For real-world applications demanding such short response 

or sync times, careful testing would be required to ensure that these targets can 

be reached under all realistic circumstances. 
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4.5  Final Conclusion: Navigating Complexity 
through Strategic Choices 

The journey through this four-

part series has provided an in-

depth exploration of the com-

ponents that shape embed-

ded real-time communication. 

From hardware selection to 

advanced optimization tech-

niques, the underlying theme 

that resonates is the pivotal 

role of response times in de-

termining every aspect of sys-

tem design and configuration. 

1. Hardware Selection: The required response times dictate the hardware 

capabilities needed, influencing decisions on modules, possibly micro-

controllers and other essential components. 

2. Operating System Considerations: Whether working with an RTOS or im-

plementing a more specific, bespoke system, the response times heavily 

influence how the operating system needs to be configured. 

3. Network Technologies: Depending on the required throughput and 

speed, different network protocols and technologies must be taken into 

consideration. As an example, this series looked at the specifics of CANo-

pen and its configurations, illustrating the nuanced choices required to 

meet different application demands. 

4. Optimization Choices: Perhaps one of the most profound insights is the 

realization that optimization is not a one-size-fits-all approach. Depend-

ing on the required response times, certain optimizations become essen-

tial, while others can be bypassed. It's a matter of fine-tuning, under-

standing what needs to be harnessed, and what can be left untouched 

without affecting performance. 

5. Strategic Ignorance: Contrary to the instinct to utilize every possible ad-

vantage, there are instances where the time frame allows for the 
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deliberate ignoring of certain optimizations. Not every register provided 

by a network controller needs to be exploited; it's a balance between 

performance and the demands of the particular application. 

Through this series, I have illuminated the complex interplay of hardware, operat-

ing systems, and network technologies, all governed by the essential factor of re-

sponse times. The insights offered serve as a guide for making strategic choices in 

system design, highlighting the importance of tailored optimization and thought-

ful decision-making. These principles enable you to craft robust and efficient real-

time communication systems, suited to your application demands. 
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5  Developing and Testing Real-Time 

CANopen solutions  

In this chapter, we will introduce you to the functionalities and utilities of EmSA's 

comprehensive range of products in the context of real-time CANopen and CANo-

pen FD applications. We offer various utilities and tools for configuration and 

analysis as well as hardware and software: 

• Configuring and Diagnosing Real-Time Behavior:  
EmSA's sophisticated diagnostic tools aid you in configuring and diagnos-
ing CANopen systems for their specific real-time behavior. 
 

• Implementing CANopen Nodes with Specific Real-Time Requirements: 
Using our CANopen hardware modules, you can directly design I/O mod-
ules with basic digital or analog inputs and outputs. Our CANopen source 
code products can be used to implement customized CANopen devices. 
 

5.1  Context of total Real-Time response times 

For all timings and measurements further down, you have to keep in mind that 

when monitoring CANopen communication and doing a timing analysis based on 

these recordings, you only see a part of the total picture. We can measure the ac-

curacy of a cycle time for transmission – but we do not know how long it took to 
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process that data internally. Specifically, the time for input data changing until a 

CANopen message is triggered is unknown. 

If you need this timing very accurately, then an oscilloscope with CAN interpreta-

tion works well. Ensure that you are monitoring the input signal and the CAN 

lines. On signal change on the input you can then measure the time until you see 

the corresponding PDO. 

Another alternative to get an approximation of total processing times is to con-

nect the inputs and outputs of a single CANopen device to each other. You can 

then trigger the PDO to the output and wait for the “responding” PDO that con-

tains the input data triggered by the change of that output. The timing between 

these two PDOs can give you an estimation of the processing times involved. 

5.2  CANopen Architect:  
Managing CANopen Configurations 

In CANopen, real-time related communication will be PDO based. No matter if cy-

clic or synced PDOs are used, CANopen Architect product allows you to quickly 

generate and modify PDO configurations. 

At the heart of CANopen based real-time communication, PDOs (Process Data Ob-

jects) are used, which serve as the cornerstone for transferring data quickly and 

efficiently within a CANopen network. 

The CANopen Architect stands as a central tool in managing these configurations. 

Whether you are working with event-driven, cyclic or synced PDOs, this tool facili-

tates quick generation and modification of PDO configurations. 

For each device, all PDO configurations can be made based on our PDO configura-

tion table as shown in the screen shot. This table provides quick access to all con-

figurable PDO communication and mapping parameters. 

 

PDO CONFIGURATION WITH CANOPEN ARCHITECT 

https://canopenarchitect.com/
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5.3  CANopen Magic:  
Loading and Testing CANopen Configurations 

CANopen Magic serves as a vital utility in the CANopen environment, not only for 

loading of configurations into devices, but also for quickly testing single parame-

ters, without the need for a complete re-configuration. Configurations can be ver-

ified quickly based on the same PDO configuration table used by CANopen Archi-

tect, giving you “live” access to these configurations. 

 

PDO CONFIGURATION VIEWS 

In addition, CANopen magic provides the ability to monitor and record all live 

CANopen traffic, including a high-resolution one-microsecond timestamp. This 

functionality ensures precise monitoring and analysis, allowing you to verify if re-

sponse times are within the require time windows. 

 

https://canopenmagic.com/
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LIVE TRACE: HERE PDOS AND TIMING 

When the configuration 

information provided 

includes details about 

the individual signals 

mapped into PDOs, a 

graph can be generate 

conating a graphical 

representation of the 

selected signal, includ-

ing timing information 

(when the signal 

changed). 

 

5.4  CANopen LogXaminer: 
Long-term Analysis 

The CANopen LogXaminer is an indispensable tool for analyzing long log files or 

trace recordings (files with more than 1 million entries get broken up). Its core 

strength lies in the analysis of cycle and response times in depth. It can accurately 

identify the minimum and maximum cycle times for PDOs and Heartbeats, and 

similarly, it pinpoints the minimum and maximum response times for SDOs. The 

timer resolution depends on the resolution of the timer used by the utility gener-

ating the log file in the first place. Ensure that this resolution is good enough for 

your requirements. Good tools provide a timestamp based on Microseconds. 
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CANOPEN LOGXAMINER ANALYSIS 

In summary, CANopen LogXaminer specifically helps revealing the worst-case tim-

ing scenarios happening in the duration of the log file. Results are summarized for 

each node (only reviewing the TPDOs and SDO responses generated by that 

node). 

5.5  CANopenIA Modules: 
Basic Profile CANopen devices 

The CANopenIA System on Modules (SoM) is a 

robust solution engineered to facilitate the devel-

opment of efficient real-time capable CANopen 

I/O nodes. Its compact design of flexible and re-

sponsive I/O nodes, significantly reducing the de-

velopment time while ensuring reliable perfor-

mance. Internal processing times for digital I/O 

are down to 15 Microseconds. Depending on con-

figuration, the module is well suited to fulfil also real-time demands going down 

to single milliseconds. 

 

https://canopenia.com/index.php/en/products/modules
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5.6  Micro CANopen Source Code: 
Custom CANopen devices 

Our Micro CANopen source code is well suited 

for implementing real-time capable CANopen 

devices, specific setting examples were listed 

in the previous chapter. Although this CANo-

pen stack implementation is also available as a 

library, only the source code version offers all 

optimization offers mentioned.  

Using this on an Arm Cortex-M microcontroller 

running at 80 Mhz or something with similar 

performance allows you to build real-time ca-

pable CANopen nodes.   

 

 

 

 

 

https://canopenstore.com/collections/embedded-code/products/microcanopen-plus

