

i Table of Contents

Balancing

Speed and Priority

Crafting Embedded Networks

for Diverse Real -Time

Communication Demands
12-SEP-2023

by Olaf Pfeiffer

 A technology guide from

COPYRIGHT 2023 BY EMBEDDED SYSTEMS ACADEMY GMBH

https://www.esacademy.com/

ii

Jointly published by

Embedded Systems Academy, Inc. Embedded Systems Academy GmbH

111 N. Market Street, Suite 300 Bahnhofstraße 17

San Jose, CA 95113, USA 30890 Barsinghausen, Germany

All rights reserved.

Limitation of Liability

Neither Embedded Systems Academy (EmSA) nor its authorized dealer(s) shall be

liable for any defect, indirect, incidental, special, or consequential damages,

whether in an action in contract or tort (including negligence and strict liability),

such as, but not limited to, loss of anticipated profits or benefits resulting from

the use of the information or software provided in this publication or any breach

of any warranty, even if EmSA or its authorized dealer(s) has been advised of the

possibilities of such damages.

The information presented in this publication is believed to be accurate. Responsi-

bility for errors, omission of information, or consequences resulting from the use

of this information cannot be assumed by EmSA. EmSA retains all rights to make

changes to this publication or software associated with it at any time without no-

tice.

iii Table of Contents

Table of Contents

Table of Contents .. iii

Introduction.. 1

1 The Clock is Ticking: Selecting the Right Real-Time Timeframe 3

1.1 Apps with Response Times Beyond Seconds .. 5

1.2 Apps with Response Times of 100ms ... 7

1.3 Apps with Response Times of 10ms ... 8

1.4 Apps with Response Times of single Milliseconds 8

1.5 Conclusion Part I and Outlook Part II .. 10

2 The Demands of Real-Time Communication Systems 11

2.1 Is There a Best Fit? .. 12

2.2 The Basics: How Much Data, How Often? .. 13

2.3 Are There Safety and Security Requirements? 13

2.4 Are There Synchronization Requirements? .. 13

2.5 Other Considerations .. 14

2.6 Too Many Choices… .. 14

2.7 What's Next? ... 16

3 The Temporal Dynamics of CAN-Based Systems .. 17

3.1 Real-Time Capabilities of CAN .. 18

3.2 Mastering the Temporal Dynamics of CAN-Based Systems 19

3.3 Mastering CAN Applications with Response Times Beyond Seconds ... 21

3.4 Mastering CAN Applications with Response Times of 100ms 21

3.5 Mastering CAN Applications with Response Times of 10ms................. 23

3.6 Mastering CAN Applications with Response Times of 1ms................... 23

3.7 Concluding the Temporal Dynamics of CAN-Based Systems 24

4 From Theory to Practice: CANopen Source Code Configuration 26

iv

4.1 Different CANopen PDO Configurations and their Impact on Response

Time 27

4.1.1 Response Time of 100ms .. 27

4.1.2 Smaller Response Times or Synchronized Signals Across Multiple

Nodes 27

4.1.3 Advanced SYNC usage ... 28

4.2 Generic Data flow in a CANopen Protocol Stack 28

4.3 Basic configuration and control options ... 29

4.3.1 CAN Driver Optimization for Receive .. 29

4.3.2 CAN Driver Optimization for Transmit .. 30

4.3.3 Considerations for "ProcessStack()" ... 30

4.3.4 Note on Return Value ... 30

4.3.5 Direct Task Trigger .. 31

4.4 Bringing together CAN Driver, CANopen Stack and Application 31

4.5 Final Conclusion: Navigating Complexity through Strategic Choices 33

5 Developing and Testing Real-Time CANopen solutions 35

5.1 Context of total Real-Time response times ... 35

5.2 CANopen Architect: Managing CANopen Configurations 36

5.3 CANopen Magic: Loading and Testing CANopen Configurations 37

5.4 CANopen LogXaminer: Long-term Analysis ... 38

5.5 CANopenIA Modules: Basic Profile CANopen devices 39

5.6 Micro CANopen Source Code: Custom CANopen devices 40

Edition

This is a combined PDF of the original article series published on linkedin:

https://www.linkedin.com/pulse/balancing-speed-priority-embedded-systems-academy

https://www.linkedin.com/pulse/balancing-speed-priority-embedded-systems-academy

1 Introduction

Introduction

When looking at articles, blogs, and posts related to real-time capable communi-

cation, they often focus on selected specific details of how "the best" can be

achieved from a certain aspect of an embedded communication system like CAN,

CANopen, or real-time Ethernet-based communication. It is crucial to consider

how these specific details apply to a broader range of applications and their

unique requirements. Many readers of such articles may question whether they

are implementing these features correctly, leading to uncertainty. What I often

miss is setting it all in perspective. If the required responsiveness of your system is

in the area of 100ms, then you do not need to review in detail every cause adding

a delay of a single millisecond or less.

To give an example, in CAN communication, collisions are resolved by prioritiza-

tion. However, without collision, even the lowest priority frame gets immediate

network access. Therefore, if your system only has a busload of 50% or less and

some mechanisms are in place that no device can produce back-to-back high-pri-

ority traffic, then discussions about optimizing priorities or managing software

handlers by priority may become purely theoretical, without significant practical

application.

A word on 'safety' and 'security': The importance of these two aspects is increas-

ing in a variety of applications. Adherence to specific safety standards, if required,

introduces a whole new layer of complexity and consideration. The details of

these standards and the intricate procedures they require can be extensive. How-

ever, to maintain the scope and length of this article, these subjects will not be

explored in-depth, and the focus will remain primarily on the subject of real-time

processing. In the context of timing behavior, it is essential to recognize that if

your signals require safety or security measures or both, additional metadata will

be necessary to safeguard the original signal data. This may include redundant in-

formation, counters, timestamps, and various cryptographic checksums.

With this series of articles, I am taking a "step back" to first find the right perspec-

tive. I start with "Part I: The Clock is Ticking: Selecting the Right Real-Time

Timeframe" to review an application's requirement – to get an idea of the "ball-

park" we are operating within.

2

In "Part II: The Demands of Real-Time Communication Systems" we look at the

different timeframes required by different applications and review what this

means for the communication system used.

In "Part III: The Temporal Dynamics of CAN-Based Systems," I apply our findings to

CAN and CANopen, giving recommendations on "how to use" (configure) the com-

munications to meet the demands found earlier.

The last article "Part IV: From Theory to Practice: CANopen Source Code Configu-

ration" shows which optimization options are typically available when working

with CANopen source code, here, our own Micro CANopen Plus.

3 The Clock is Ticking: Selecting the Right Real-Time Timeframe

1 The Clock is Ticking: Selecting the

Right Real-Time Timeframe

In the world of embedded systems, real-time applications occupy a crucial niche.

These applications are characterized by their requirement to process inputs and

produce outputs within a specific timeframe. The accuracy of the results they pro-

vide depends not only on their logical correctness but also on the precise timing

of their responses. As these systems interact with the physical world, the stakes

can be high, often involving human safety, product quality, or efficient system op-

eration. Therefore, the responsiveness of these applications becomes a basic as-

pect of their design.

However, “within a specific timeframe” can be very different depending on the

application. For the rudder and thrust control of a large ship, this might be a sec-

ond or more. For a high-speed sorting and packaging unit in a cookie factory, it

might be single milliseconds. And these two cases already show nicely the differ-

ent demands regarding safety: The “slow” commands in the ship need to be much

more reliable (or safer) than those commands sorting cookies.

4

As you can imagine, the specific

challenges of implementing real-

time applications often depend on

the communication channels in-

volved. Are the inputs and outputs

directly connected to the main pro-

cessing unit, or is an embedded

communication network neces-

sary?

As applications tend to grow more

complex and geographically distrib-

uted, it is impractical to have direct

connections to every input and out-

put. Instead, many real-time systems rely on remote connections. Sensors, actua-

tors, and other devices might be located far from the central processing unit,

making some form of communication between them necessary. Often, this also

means that data has to be transmitted twice within the required timeframe: in-

puts from sensors to the processing unit and secondly the processing units' out-

puts to the actuators.

All of this brings additional challenges and considerations: Communication chan-

nels introduce delays, or potential data corruption or loss. Designers of real-time

systems must now account for these factors, ensuring that the communication

methods used can still meet the system's real-time requirements. In addition,

these systems must now be able to handle multiple, often simultaneous, data

streams and manage the prioritization of these streams based on their urgency

and importance.

The increasing sophistication and requirements of real-time applications, coupled

with the growing distance between the processing unit and input/output devices,

have made the design of real-time systems a multi-faceted and challenging en-

deavor. Such a development demands a deeper understanding of communication

protocols, network topologies, and error handling mechanisms. Only by address-

ing all these factors can we ensure that real-time systems continue to meet the

stringent demands placed upon them.

Before diving into the design process, the first and most crucial question is deter-

mining the required timeframe for a specific application. Are we talking about sec-

onds? Hundreds of a second? Or even milliseconds? Once a system has been fully

5 The Clock is Ticking: Selecting the Right Real-Time Timeframe

designed and developed, shortening the timeframe might not be possible, as

many design decisions would have been based on the initial timeframe estimate.

After you've established a desired timeframe for the real-time responsiveness of

the system, I recommend taking some extra time to review it thoroughly. Con-

sider having your boss, customer, or partners sign off on it, as making changes to

the established timeframe later on can be costly.

If your application requires that the “the entire input to output” to be included

into the calculation, then you have multiple times to add up: processing time in

the input sensor to collect the input and preparing it for transmission, transmis-

sion delay, processing time in the main processor: receiving the inputs (waiting for

others?), processing them and preparing for transmission to the outputs and on

the outputs the processing delay of receiving the data and actually applying it.

In the following, let’s review some application examples sorted by the required

response times:

1.1 Apps with Response Times Beyond Seconds

For applications operating in timeframes of single or multiple seconds, the sys-

tems often don't require special precautions. This is because the delay tolerance

of these applications is significantly larger than the typical delays introduced by

communication protocols. Interestingly, even when the control code is executed

on slower non-real-time operating systems, timely operation is achievable. Chal-

lenges may arise if the operating system is tasked with excessive concurrent oper-

ations, but these situations are generally exceptions rather than the norm. Never-

theless, do not underestimate the consequences: even if in your application the

realtime timeframe is 1s – what exactly will happen if that 1s is not met? Is that

just annoying – or will something get damaged – or does the data even need to be

‘safe’ as otherwise some serious damage or even deaths could occur?

Solar Tracking of Solar Panels: Solar panels with tracking capabilities adjust ac-

cording to the sun's position. Delays of seconds to minutes are typical in this ap-

plication, ensuring optimal energy capture even with occasional control delays.

HVAC Systems: Heating, Ventilation, and Air Conditioning systems often incorpo-

rate sensors to modulate temperature and air quality. While immediate adjust-

ments are beneficial, a delay of several seconds is generally well within the ac-

ceptable range.

6

Mining Equipment: In mining operations, large machinery such as conveyors and

large-scale excavators require multiple seconds to start or stop. Given the scale, a

delay of a second in system response can be acceptable, especially for non-critical

adjustments. However, safety-critical functions like an emergency shut-off will

have more stringent requirements.

Maritime Applications: Given the relatively slow movement dynamics of large

maritime vessels, a second of delay for data processing and navigation can be ac-

ceptable.

Sub-Sea Operations: In deep-sea systems, reliability stands as the foremost prior-

ity. While managing seabed operations—from pipeline control to equipment ad-

justments—commands may take multiple seconds to reach their destination and

cause the desired action.

7 The Clock is Ticking: Selecting the Right Real-Time Timeframe

1.2 Apps with Response Times of 100ms

In many scenarios, especially those centered around human-machine interaction,

response times in the ballpark of 100 milliseconds are crucial. This range is rooted

in the fundamental limits of human perception and reaction. When a system re-

sponds within this timeframe, the interaction feels nearly instantaneous to the

user, promoting a sense of seamless control and real-time feedback. Given that

the average human reaction time to visual stimuli is greater than 100ms, systems

that operate within a 100ms timeframe are within the range to feel immediate

and intuitive. To achieve these response times, you generally don't need to take

any special measures regarding your communication channel. Even at relatively

slow communication speeds like 100kbps this can be reached.

Vehicle Instrumentation and Controls: In a variety of human-controlled vehicles,

such as cars, forklifts, cranes, and agricultural vehicles, a myriad of displays and

controls—from touchscreens to dials—rely on swift feedback. This ensures the

operator remains informed and in control. Sending controls via switches or joy-

sticks, or receiving real-time feedback from sensors, all need to occur within this

timeframe.

Industrial Machine Interfaces: Operators at manufacturing plants interact with

complex machinery through control panels. Quick feedback is essential, ensuring

the user's commands translate to machine actions almost instantly, which in turn

enhances operational safety and efficiency. Where it takes longer to activate a

command, some immediate vis-

ual feedback should be provided

to signal the operator that the

selected function is now about to

be executed.

Medical Equipment: Devices

such as patient monitors and

specific diagnostic tools require

timely feedback when healthcare

professionals adjust settings or

input commands. This prompt

response ensures both patient

safety and the confidence of

healthcare professionals.

8

1.3 Apps with Response Times of 10ms

For applications demanding a response time around 10 milliseconds, precision is

imperative. These timings significantly surpass the boundaries of human percep-

tion, resulting in systems often responding or adjusting even before a human can

register the event. Consequently, the foundational systems must operate with un-

paralleled efficiency and consistency. Realizing these rigorous timings demands

detailed planning, balance between speed and priority, but potentially also go

deep into the software layers, including drivers and firmware, that process the

data. With precise optimization, these systems exhibit the ability to react

promptly, reinforcing safety, preserving functionality, and assuring peak perfor-

mance.

Driver Assist Systems: Advanced Driver Assistance Systems like traction control,

lane-keep assist, and anti-lock brakes are paramount in delivering quick re-

sponses. These systems sense and react to instantaneous shifts in vehicle dynam-

ics, often in situations where any delay could lead to potential accidents.

Industrial Robotics: In state-of-the-art manufacturing setups, robotic arms and

their allied machinery are tasked with instantaneous adjustments. Such prompt-

ness ensures meticulous precision, safeguards the sanctity of the production pro-

cess, and curtails errors.

Emergency Shut-Off Systems: In various control settings, the quick actuation of

emergency shut-off systems is crucial. Whether responding to machinery mal-

functions, hazardous leaks, or any unpredictable scenario, the swift activation of

these systems can prevent significant damage, financial losses, and more im-

portantly, protect human lives.

1.4 Apps with Response Times of single Millisec-
onds

For applications that demand response times in the order of single milliseconds,

the capabilities of several communication networks are stretched to their limits.

Keep in mind that this is not about total throughput (typically only a few bytes are

exchanged here) but get these bytes to the destination quickly. Achieving such

rapid reactions requires a review of every facet of the system—from the configu-

ration of the network to the underlying code—to be optimized. When getting into

such demanding requirements, a comprehensive evaluation should be conducted

9 The Clock is Ticking: Selecting the Right Real-Time Timeframe

to determine if the chosen communication protocol is indeed the most suitable

solution or if other solutions are available to complete the tasks at hand.

High-Speed Motion Control: In specialized industrial setups, machinery requires

instantaneous adjustments based on rapid feedback loops. Such applications

could involve fine-tuning motor speeds, swiftly actuating valves, or modulating

high-speed actuators in real-time.

Advanced Robotics: Especially prevalent in high-precision tasks, these robots

might be involved in operations like placing delicate electronic components onto

a PCB at accelerated speeds, where the slightest delay can lead to significant er-

rors.

10

Airbag Deployment: In vehicular safety systems, the time between detecting a

potential crash and deploying an airbag can be mere milliseconds. Such a rapid re-

sponse is crucial to ensure the safety of the vehicle's occupants, where every mil-

lisecond counts towards mitigating injury.

1.5 Conclusion Part I and Outlook Part II

As we have seen in this first part of our series, applications across various sectors

have different response time requirements, ranging from seconds to mere milli-

seconds. The ability of a communication system to meet these needs is critical to

achieving optimal performance and efficiency.

However, understanding these response time requirements is only one part of the

puzzle. In the upcoming second part of this series, I will go deeper into the specific

demands placed on a communication system to meet requirements for real-time

capable communication. We will explore the technical aspects that impact com-

munication speed, latency, and arbitration, including considerations such as net-

work architecture, bandwidth, and data processing capabilities. Furthermore, we

will examine the trade-offs and compromises that must be made when selecting a

communication system that strikes a balance between speed, complexity, and

cost.

11 The Demands of Real-Time Communication Systems

2 The Demands of Real-Time Communi-

cation Systems

The ever-increasing complexity and demands of modern real-time applications

necessitate robust and reliable communication systems. As established in the first

part of this series, these applications span a wide spectrum of response time re-

quirements, from seconds to milliseconds, and their success is often contingent

on the precise timing of their responses. Consequently, the chosen communica-

tion system must be capable of meeting these stringent timing constraints. How-

ever, achieving the desired real-time capabilities is not the sole consideration. In

many cases, these systems also need to ensure the safety of users, equipment,

and the surrounding environment. Additionally, given the growing threat land-

scape, ensuring the security of these communication systems has become equally

critical. Balancing these requirements—real-time responsiveness, safety, and se-

curity—is a multifaceted challenge.

In this second part of our series, we investigate the specific attributes and consid-

erations that make a communication system capable of fulfilling these demands.

Over time, the demands on real-time communication systems have evolved and

12

become more stringent. In the early days, the primary focus was on achieving

real-time requirements with a reasonable level of reliability. It was often deemed

sufficient if the system could process and transmit data within the specified

timeframes, even if occasional errors occurred. As technology advanced and sys-

tems became more sophisticated, the need for safety became apparent. "Some-

what reliable" was no longer adequate, especially for applications where human

safety, product quality, or system operation was at stake. To address these con-

cerns, specific protocols were developed to ensure that real-time systems could

operate safely, even in the face of faults or disruptions.

The importance of safety grew, particularly in critical applications such as trans-

portation or medical devices. More recently, as real-time systems increasingly be-

came interconnected and even accessible over the internet, security emerged as

another crucial consideration. With the potential for cyber-attacks and unauthor-

ized access, it became necessary to safeguard not only the data but also the integ-

rity and availability of the communication system itself.

Today, a comprehensive real-time communication system must meet all three cri-

teria: real-time responsiveness, safety, and security. It is no longer advisable to

start from scratch when designing an embedded communication system for any

real-time application. Once, it was quite common for developers to take an ad-

hoc approach, such as repurposing one of the serial ports to share it among multi-

ple nodes, effectively creating an RS485-style network. However, this approach

does not accommodate the increasing complexity of real-time systems.

2.1 Is There a Best Fit?

In German, there's a saying "Es gibt keine eierlegende Wollmilchsau," which can

be translated to "there is no one-size-fits-all solution" or, more literally, "there is

no egg-laying wool-milk pig." This saying applies here as well. Regrettably, there is

no single networking technology that is universally suitable for all applications.

Each application has its unique set of requirements and constraints, making it

necessary to carefully evaluate and select the appropriate communication tech-

nology and protocols. Therefore, it is essential to consider the specific needs of

the application and match them with the most suitable networking technology

available, taking into account factors such as required throughput, real-time re-

sponsiveness, safety, and security.

13 The Demands of Real-Time Communication Systems

2.2 The Basics: How Much Data, How Often?

First, assess the overall architecture of your system. In addition to real-time re-

quirements and the timeframe within which a complete control step must be exe-

cuted, consider the total number of inputs and outputs required, their distances

apart, and the number of signals and their data lengths that need to be ex-

changed within each timeframe and between devices. In general, it is not advisa-

ble to push any system "to its limits," so any networking technology you choose

should have enough capability to accommodate your application's growth over

time.

2.3 Are There Safety and Security Requirements?

Once you've established the applicable timeframe for your application, it is crucial

to determine what safety and security measures are necessary. If your application

must adhere to specific safety standards or certifications, your choices regarding

communication networks will automatically narrow. For this article, we focus on

the real-time requirements. When conducting your research, double-check the

latest developments—all active fieldbus organizations and committees are contin-

ually working on improving both safety and security.

2.4 Are There Synchronization Requirements?

Consider whether any signals require synchronization, meaning that inputs should

be captured at the same moment in time. Synchronization is critical for applica-

tions where multiple inputs are combined. In real-time communication systems,

synchronization plays an important role in ensuring accurate data transmission

and interpretation. Some applications demand synchronization due to their na-

ture (e.g., syncing multiple manipulators working on the same material simultane-

ously), while other effects might be more subtle: Consider a scenario where an

analog sensor generates input data every 100ms based on its internal timer. The

14

transmission of this data onto a network also occurs every 100ms, triggered by a

separate network timer. If these timers are not synchronized, they may gradually

drift apart, leading to two possible scenarios:

1. Duplicate Data Transmission: If the network timer's window is shorter

than the sensor's, the sensor may not have generated new input data by

the time the network is ready to transmit. In this case, the same data

could be transmitted twice.

2. Data Loss: If the sensor's timer window is shorter than the network's, a

new value may be generated before the previous one has been transmit-

ted. This situation can lead to skipped or lost data.

The impact of these scenarios greatly depends on the signal and its usage. For in-

stance, if the value represents temperature and the main processing unit only

needs to know if it falls within the correct range, these scenarios have no effect.

However, if it is a counter or a rapidly changing signal representing a wave, miss-

ing or duplicated data may have serious consequences.

2.5 Other Considerations

When selecting a real-time communication system, there are many additional

considerations: Are off-the-shelf products, development, and diagnostic tools

readily available? Can it easily integrate with existing (or planned) systems? If

hard real-time of single milliseconds is a requirement, such integration may need

to go "deeper" into a system, potentially requiring custom software at the lowest

levels of the hardware.

2.6 Too Many Choices…

Understanding the specific requirements of your application—real-time respon-

siveness, safety, security, system architecture, and synchronization—can guide

you in selecting a suitable communication network. If you start at zero, a potential

starting point for gaining an overview of available fieldbusses is the Wikipedia en-

try titled "Fieldbus." However, note that this list captures only a fraction of the

available fieldbusses. The domain of industrial communication networks is vast

and continuously evolving, with many fieldbusses, some not even officially stand-

ardized. Beyond the widely-recognized fieldbusses, many networks, often crafted

by manufacturers or consortia, cater to specific applications or industries. They

might offer distinct features, specialized protocols, or proprietary technology tai-

lored to certain application needs.

15 The Demands of Real-Time Communication Systems

For instance, the Controller Area Network (CAN) is a versatile communication pro-

tocol supporting numerous applications through its specialized protocols. Proto-

cols like J1939 cater to commercial vehicles (like construction, agriculture), stand-

ardizing message formatting and signaling to facilitate manufacturers in crafting

interoperable components. NMEA 2000, by the National Marine Electronics Asso-

ciation (NMEA), aids the

integration of marine elec-

tronics, streamlining the

configuration and man-

agement of intricate ma-

rine systems. CANaero-

space, designed for aero-

space, meets the distinct

demands of avionic sys-

tems, ensuring reliable

data exchange in aircraft.

The CANopen protocol, with its flexibility, boasts many device and application

profiles, such as those for elevators, emergency vehicles, and CleANopen for

waste collection vehicles. These profiles determine the communication behavior

and data structures for devices or entire applications, simplifying the develop-

ment process.

Moving beyond CAN, some 10+ different solutions exist for Ethernet-capable real-

time communication, each targeting varied applications. As a general rule, if your

application's real-time requirement is roughly 100ms or more, you have a multi-

tude of choices since most embedded communication networks or fieldbus can

fulfil these demands, even for more extensive systems. However, for vast machin-

ery (spanning several hundred meters of cable and beyond), scrutinizing commu-

nication runtime and throughput is essential.

For stringent real-time requirements, as short as 10ms or even less, it's imperative

to diligently review which network technologies can satisfy your needs. Typically,

a time-triggered communication system (available on CAN, Ethernet, and other

platforms) is the most deterministic. Here, each signal with real-time require-

ments is allocated an exclusive timeslot, ensuring predictable signal transmission.

16

2.7 What's Next?

As an expert in CAN and CANopen communications, the next part III of this series

will focus on CAN and CANopen as examples for the many embedded communica-

tion systems available. I will explore its suitability for diverse systems with real-

time requirements, highlighting achievable response times, areas demanding me-

ticulous attention, and situations that push boundaries, suggesting the evaluation

of alternatives.

17 The Temporal Dynamics of CAN-Based Systems

3 The Temporal Dynamics of CAN-Based

Systems

After reviewing the basic requirements for selecting a real-time capable embed-

ded communication system, I will now examine the real-time capabilities and limi-

tations of CAN and CANopen in greater detail.

The Controller Area Network (CAN) protocol serves as the foundation for numer-

ous applications across a wide range of industries, each with its own distinct real-

time demands. Prominent examples like CANopen and J1939 highlight the diverse

adaptations of this protocol to meet specific needs. It's important to note that the

real-time requirements for these applications are not uniform across the board.

While some applications require reaction times measured in milliseconds, many

others operate effectively under more relaxed criteria. Factors such as physical

constraints, network topologies, and computational tasks play a crucial role in

shaping these requirements. As we explore tighter real-time constraints, the com-

plexity of communication configurations and code handling increases. However,

when real-time requirements are more relaxed, it opens up opportunities for sim-

pler, more streamlined system designs without sacrificing functionality or reliabil-

ity.

Although bothy safety and security have been addressed with (by CANopen Safety

and CANcrypt) there is currently no standardized solution that provides both. The

CiA (CAN in Automation) user’s group currently has multiple working groups re-

viewing various aspects of both safe and secure communication with CAN, CAN FD

and CAN XL.

18

3.1 Real-Time Capabilities of CAN

CAN's real-time effectiveness is closely tied to its communication speed, and fur-

ther affected by its priority-based arbitration mechanism. Calculating CAN frame

transmission times is not a straightforward task; the time depends on both the

number of data bytes and their content. This complexity arises because stuff bits

may be added to a frame depending on its data. Therefore, the following deter-

mined values should be considered as approximations, providing a general sense

of the scope at hand.

It's important to remember that your maximum bitrate also depends on the phys-

ical topology of the cabling, and depending on your application, the total transfer

required for a single control cycle might include two transmission paths: one for

input data to the control unit and another from the control unit to the outputs.

Though I focus on CAN here, most of the following considerations also apply to

the CAN FD (Flexible Data Rate) and CAN XL variants. Both of these protocols fea-

ture a dual bitrate mechanism, further enhancing their data throughput capabili-

ties. However, when discussing timing-related dynamics, most of the considera-

tions I have outlined predominantly apply to the "nominal bitrate." This founda-

tional bitrate essentially establishes the pace for control information such as arbi-

tration, acknowledgment, and error signaling. For those using CAN FD and CAN

XL, it's crucial to be aware of the additional complexities introduced by the "data

phase bitrate," which governs the transmission of the actual data. One of the key

concerns in these systems is determining the maximum duration a lengthy mes-

sage might occupy the bus and how much longer this delay might be compared to

the longest classical CAN frame with 8 bytes.

At its maximum speed of 1Mbps, CAN allows for the exchange of more than ten

frames within a millisecond. Conversely, at a modest rate of 125kbps, it averages

around one frame per millisecond. Beyond mere transmission times, signals or

frames can experience delays if higher-priority communication is in the queue. To

put it simply, the worst-case transmission time would be the sum of the frame's

own transmission time and the delay expected from the longest sequence of

higher-priority traffic in the system. This assumes that all communication happens

on a single CAN bus. If signals need to be forwarded via bridges or gateways, de-

lays become longer and even more challenging to predict.

The system of message prioritization can be a double-edged sword. However,

there is a mitigating factor: by strategically limiting the duration of sequential

19 The Temporal Dynamics of CAN-Based Systems

high-priority traffic, even communications with the lowest priority can be dis-

patched with minimal delay. This approach ensures consistent and timely data ex-

change throughout the system.

Looking at CAN (and the FD and XL variants) by itself, it is clear that “as is” it is not

deterministic. A single device producing high priority frames can block the com-

munication for all others. To make CAN deterministic, we need to ensure a con-

trolled frame triggering – when may which CAN ID be used. To activate CAN's real-

time capabilities, consider the following design goals. While these guidelines may

vary based on application specifics, they serve as a reliable starting point:

A) Aim to keep the overall busload at a level where even low-priority frames have

sufficient time to access the bus. While the exact threshold can vary by applica-

tion, my initial recommendation is to stay below 75% busload (less if communica-

tion is purely change-of-state-based).

B) Ensure that no individual node can generate an extended stream of consecu-

tive messages. Some drivers offer a transmission "throttle" to limit the maximum

transmission rate.

C) For those seeking finer control over transmission timing and sources, consider

the SYNC mode of CANopen. This mode enables trigger messages, providing en-

hanced control over transmission schedules, allowing trigger modes like those

used by time triggered systems.

3.2 Mastering the Temporal Dynamics of CAN-
Based Systems

After exploring the various use cases and their respective temporal demands of

CAN-based systems, you can imagine that matching CAN configurations to specific

time requirements is both an art and a science. The following table summarizes

some of the main numbers and factors to consider. The first section of the table

gives you a summary of the CAN timings and throughputs that you can expect at

various bitrates – this is all for classical CAN using 11bt CAN message identifiers.

The fact that even at the lower bitrates we are still talking about potentially thou-

sands of CAN frames per second never stops amazing me. There is sooo much

room for communication that one can easily grasp that with some well-defined

parameters on how to use all this “space” one can very well design real-time ca-

pable systems.

20

TABLE: BALLPARK FIGURES FOR TRANSMISSION DELAYS

The next section of the table shows potential transmission delays and depends on

many factors. Therefore, it is only a rough estimate for a specific use case, you

need to adapt it to your own use case. The first row shows the delay even the

highest priority will have, if the bus is currently in use (arbitration already started,

transmitter is too late to join). Transmission has to wait, until the current frame

completed. The second row shows an arbitration delay – if there are other devices

also trying to transmit a frame, how long do we have to wait? Here we show the

delay for 5 other frames currently pending for transmission and having a higher

priority followed by a line of further delays, if a throttle mechanism is used pro-

tecting from back-2-back transmissions. Further on in this article we will review

what can be done if the sum of delays shown is unacceptable in your application.

The last section of the table shows the potential processing delays caused by exe-

cuting various code on the device handling the CAN communication. Here we as-

sume that a modern 32bit MCU with integrated CAN interface is used running at

80Mhz or faster. In such environments, the code execution directly related to

21 The Temporal Dynamics of CAN-Based Systems

handling the CAN frames is typically marginal. Potential delays come from “what

else is happening” on that MCU.

Translating this knowledge into real-world system performance requires actiona-

ble strategies and considerations. With the previously established benchmarks

from part I—seconds, 100ms, 10ms, and single milliseconds—as our guideposts,

let's review practical recommendations for optimizing your CAN-based systems.

3.3 Mastering CAN Applications with Response
Times Beyond Seconds

In the domain of applications op-

erating with delays stretching

into seconds or even minutes,

designing CAN-based systems to

meet these response times is not

particularly challenging. Interest-

ingly, even a device burdened by

sub-optimal drivers or firmware

might still be suitable, as even

sub-optimal drivers will even still

perform within 10 to 100 of mil-

liseconds.

However, when working with

devices that rely on non-real-

time operating systems, the challenge lies not so much in countering communica-

tion delays, but rather in upholding consistent performance and avoiding the

worst-case possible delay. Regular testing and thorough monitoring are essential

to ensure that these devices never falter in allocating the necessary resources for

seamless CAN communication. It is also crucial to proactively curb any potential

system disruptions. Simple yet effective measures, such as ensuring the absence

of updates or other resource-draining operations during active communication

periods, can strengthen the system's responsiveness and reliability.

3.4 Mastering CAN Applications with Response
Times of 100ms

This domain is where the potential of CAN, in synergy with higher-layer protocols

like CANopen, truly comes into play. The CANopen PDO (Process Data Object)

22

communication mechanisms inherent in CANopen provide users with flexible con-

trol, simplifying the configuration of message content and triggering. These PDOs

facilitate real-time data exchange between nodes, optimizing communication effi-

ciency.

At this response time, CAN ID assignment and overall busload remain critical, but

not overwhelmingly so, as they are unlikely to cause delays approaching any-

where near 100ms. The system architecture should be designed such that even

messages with the lowest priority have timely bus access, ensuring their transmis-

sion within the stipulated timeframes. As we navigate this middle ground, it be-

comes increasingly important to review potential high-priority message bursts.

Back-to-back high-priority transmissions can dominate the bus, posing risks of de-

lays for lower-priority messages. Effective strategies for avoidance or control,

such as limits on what each node can transmit per timeframe or synchronized

triggering, can be employed to mitigate these bursts, ensuring more predictable

and harmonious bus communication, even as the system scales.

While many non-real-

time OSs can still achieve

a 100ms response, it is

advisable to lean towards

an RTOS (Real-Time Oper-

ating System) in such sce-

narios (if an OS is re-

quired at all, many simple

IO devices typically do not

have an OS at all). Using

an RTOS aligns naturally

with the demands of a 100ms response window. If a non-RTOS is chosen, rigorous

and extended testing becomes imperative to ensure the OS consistently meets

the desired response times under all conceivable operational circumstances.

Within this 100ms response time framework, the software and firmware require-

ments remain relatively forgiving. Specific optimizations are often unnecessary;

even drivers or stack implementations deemed sub-optimal in high-performance

environments (for example not taking advantage of CAN controller hardware fea-

tures for advanced filtering and buffering) can adequately serve the purpose.

23 The Temporal Dynamics of CAN-Based Systems

3.5 Mastering CAN Applications with Response
Times of 10ms

As we move into the 10ms response time zone, precision and control over every

system component becomes essential. This is where detailed scrutiny of network

data flow is essential.

Time-triggered networks, optimized for hard real-time applications, are often the

preferred choice in such demanding scenarios. The CANopen SYNC mode is an ef-

fective approach to mimic communication behavior as used in time-triggered

communication systems. By utilizing SYNC triggering messages, it enables specific

nodes to transmit their associated PDO messages at precise moments, bringing

predictability and consistency to system communication.

While a Real-Time Operating System (RTOS) might seem ideal for such tight timing

requirements, it comes with its set of challenges. An RTOS offers a range of con-

figuration options, and managing these tasks requires careful coordination.

Within the tight 10ms window, the process involves a sensor sending its current

data, a control device with an RTOS receiving and processing this data, and then

acting upon it.

However, simply implementing an RTOS does not guarantee the desired out-

comes. Task prioritization and configuration must align perfectly with the system's

stringent timing requirements. Additionally, a detailed review of driver functional-

ity, firmware, and stack structures is crucial. Potential issues, such as priority in-

version where a low-priority message in the queue might delay a higher-priority

one, need to be addressed. Highly optimized drivers can address priority inver-

sion, but this may cause changes in transmission sequences. A change in transmis-

sion sequences can be problematic for certain higher-layer protocols and needs to

be reviewed carefully.

3.6 Mastering CAN Applications with Response
Times of 1ms

Venturing into the 1ms response time territory for CAN-based applications is akin

to treading on the edge of the protocol's capabilities. These applications truly

push the boundaries, requiring an unparalleled level of optimization and attention

to every detail.

24

At this threshold, conventional approaches and tools often prove inadequate.

Even some RTOSs, which typically excel in managing real-time tasks, may struggle

to consistently adhere to this tight window. This necessitates reliance on micro-

controller-specific implementations, where most tasks are handled directly within

interrupt service routines, bypassing the typical layers of an RTOS.

The extreme precision re-

quired at this level means

that many system configu-

rations may need to be

hard-coded, potentially

bypassing higher-layer

protocol stacks like CANo-

pen that would otherwise

delay processing. This also

helps avoid potential de-

lays introduced by config-

uration handling, ensuring

maximum predictability.

Every component, mes-

sage, and byte transmit-

ted on the network must

be judiciously managed.

Given the stringent requirements, if a 1ms response time is a necessity for your

application, it is wise to review if other communication solutions beyond CAN

might be better suited to your needs. This domain requires significant commit-

ment in terms of development time, testing, and optimization. If this endeavor is

taken on, one should be fully prepared for a time-consuming project journey.

3.7 Concluding the Temporal Dynamics of CAN-
Based Systems

The exploration of the temporal dynamics of CAN-based systems has underscored

the adaptability and capabilities of the CAN protocol across various response time

requirements. For applications with response times extending beyond seconds,

there is less emphasis on precise timing, and decisions regarding CAN ID usage,

higher-layer protocols employed, or the operating system selected generally have

a less pronounced impact on performance.

25 The Temporal Dynamics of CAN-Based Systems

However, as we reach into tighter time constraints of 100ms and 10ms, system

design considerations become of greatest importance. These include total bus

load, message priorities, and the strategic employment of functionalities like CAN-

open's SYNC mode. When navigating the demanding 1ms response time domain,

every element of the system requires meticulous attention and may even prompt

a re-evaluation of the network system selected.

In conclusion, understanding the balance between application requirements, the

inherent strengths of CAN, and the related temporal constraints is vital. It's this

knowledge that empowers CAN system designers to make informed decisions

across diverse temporal scenarios.

In the next and last article of this series, we will go deep into the technical details,

examining the configuration and optimization options available with CANopen

source code solutions, such as Micro CANopen Plus. We will provide practical in-

sights into how the inherent strengths of CANopen can be harnessed to meet a

broad range of real-time application demands. This final part will offer readers a

tangible guide to optimizing real-world CANopen implementations for shortest

processing times.

26

4 From Theory to Practice: CANopen

Source Code Configuration

As we have seen in the previous parts of this series, the adaptability and fine-tun-

ing of CANopen systems play a crucial role in meeting real-time application de-

mands. In this final instalment of our series, I show you technical details of CANo-

pen source code configuration, shedding light on the various ways it can be opti-

mized for efficient real-time performance.

Throughout this article, I will examine specific examples using EmSA’s Micro CAN-

open Plus source code. These examples will illuminate the process of configuring,

optimizing, and fine-tuning a CANopen stack to cater to advanced temporal re-

quirements and possible system constraints. While my focus is on Micro CANopen

Plus, it's worth noting that the principles and methods I will explore here are likely

to work with other CANopen source code implementations in a similar way.

Whether you are an experienced CAN system designer looking to sharpen your

optimization skills or a newcomer seeking to understand the nuances of real-time

27 From Theory to Practice: CANopen Source Code Configuration

CANopen configuration, this part aims to provide comprehensive insights and

guidance, translating the theoretical knowledge we gained into practical imple-

mentation.

4.1 Different CANopen PDO Configurations and
their Impact on Response Time

The configuration of CANopen PDOs (Process Data Objects) plays a critical role in

determining the response time in various applications. Depending on the required

response time and the necessity to synchronize signals across multiple nodes, dif-

ferent PDO triggering mechanisms can be applied.

4.1.1 Response Time of 100ms

For applications where the required response time is 100ms or longer, there are

typically two configuration methods that work well (and can also be combined):

• PDO Triggering by Event Time (Cyclic Transmission): Here, the PDOs are

transmitted cyclically at specified time intervals, such as every 50ms. This

periodic transmission ensures consistent response times.

• Change of State (COS) Detection with Inhibit Time: This configuration

transmits PDOs based on changes in state, with a minimum time (inhibit

time) between transmissions. This inhibit time ensures that a toggling in-

put does not produce back to back messages.

PDO CONFIGURATION WITH CANOPEN ARCHITECT

4.1.2 Smaller Response Times or Synchronized Signals Across
Multiple Nodes

For applications requiring smaller response times or where there is a need to syn-

chronize signals across multiple nodes, the SYNC mode becomes the preferred

method:

28

• SYNC Mode: In this configuration, one SYNC producer generates a SYNC

CANopen message at stable, repeating intervals, such as every 10ms.

This SYNC message serves as a triggering mechanism, used by all devices

in the network to apply data synchronously, at the same time.

4.1.3 Advanced SYNC usage

When using the CANopen SYNC mode, there are two advanced features that you

can take advantage of. First, most SYNC consumers allow the configuration of the

SYNC CAN message identifier to be used. So you could configure a system to use

multiple SYNC trigger messages and select which devices react to which trigger.

Secondly, the latest version of CANopen supports the use of SYNC with an inte-

grated configurable counter. As an example, this could be configured to count un-

til 4. On the SYNC consumer side, you can configure the count value that each

consumer listens to, again providing the option of grouping devices to react on

specific SYNCs on the system.

Choosing the right PDO configuration is vital for achieving the lowest response

times. While cyclic transmission and COS detection with inhibit time are suitable

for more relaxed response time requirements, the SYNC mode becomes essential

when handling tighter time constraints or needing to synchronize multiple de-

vices. For more details on these different trigger mechanisms and how they can

be combined, see our video https://www.youtube.com/watch?v=vxi5awte5eo

4.2 Generic Data flow in a CANopen Protocol Stack

On the lowest hardware level, a CAN controller will be receiving CAN frames. De-

pending on filters, these might be placed into pre-selected buffers or queues, and

an interrupt signal will be generated. The processor handling the CAN controller

starts processing the "CAN receive interrupt service" – typically part of a proces-

sor-specific driver. A generic driver will now simply pass on the CAN data to an-

other software queue for later processing; I will discuss advanced options later.

At any time, the application program might update some of the process data to

be transmitted via CANopen.

29 From Theory to Practice: CANopen Source Code Configuration

To keep the CANopen stack alive, there will be a function, such as "Pro-

cessStack()", that needs to be called frequently (for example, simply in a "main

while(1) background loop"). When called, this function typically first checks if

CANopen messages were received; if so, they are processed. If the data involves

updating process data, then there is typically a callback to inform the application

that new process data has arrived.

When all received CANopen messages are processed, the function checks if there

is anything to transmit. It may detect that outgoing process data was modified by

the application, and depending on the configuration of timers and transmission

mode, initiate the transmission of a corresponding CANopen message.

Such transmissions are typically passed to the driver level, possibly into a transmit

queue, and it depends on the driver configuration when exactly this CANopen

message will be passed to the CAN controller for transmission.

4.3 Basic configuration and control options

Unless the required processing and response time is smaller than 100ms such a

data flow works good enough for most applications. If required response times

get smaller, you should start looking into possible optimizations. When reviewing

the generic data flow above, possible optimizations include:

4.3.1 CAN Driver Optimization for Receive

Many default drivers supplied by chip manufacturers (or even CANopen stack pro-

viders) might not take full advantage of the specific features of a CAN controller.

One of the first possible optimization checks is to ensure that where possible,

hardware receive filtering and hardware receive buffers or queues are utilized,

thus eliminating the need for a long (delaying) software receive queue.

30

4.3.2 CAN Driver Optimization for Transmit

Before reviewing this, consider what is more critical to your application – whether

this device can transmit as many CAN frames back-to-back as possible, or whether

the transmission should be somewhat throttled to ensure that no single device

can produce too long a period of high-priority back-to-back traffic. If it should be

throttled, consider implementing a transmit trigger based on a timer, such as be-

ing able to transmit one CAN frame every millisecond (our default driver uses the

1ms timer interrupt for this).

4.3.3 Considerations for "ProcessStack()"

A typical question regarding "ProcessStack()" is how often it should be called and

what the worst-case execution time is. Some prefer to call it from a fixed timer in-

terrupt instead of the background loop. There is no generic answer to these ques-

tions. In our Micro CANopen Plus implementation, we try to keep the execution

time short by NOT executing all pending CANopen tasks but only the most vital

ones. How often it should be called depends heavily on the local device's commu-

nication. Our Micro CANopen Plus implementation, however, has a slick feature

here: with every call, only the

most critical pending tasks of the

CANopen stack are performed.

Producing the heartbeat message

is always the least important task.

Therefore, by monitoring the de-

vice’s heartbeat signal's accuracy,

you can determine if calls to "Pro-

cessStack()" occur often enough. If

there are not enough calls to "Pro-

cessStack()", the heartbeat be-

comes slower than specified, or it

may not be transmitted at all.

4.3.4 Note on Return Value

Another important factor is the function's return value. It returns TRUE when a

pending CANopen task was executed, and FALSE when there is no CANopen task

pending. If you want to ensure that all pending CANopen tasks are executed in

your code, simply use:

31 From Theory to Practice: CANopen Source Code Configuration

while(ProcessStack())

{

}

This will keep re-calling the function until all pending CANopen tasks have been

executed.

4.3.5 Direct Task Trigger

The function "ProcessStack()" serves those who prefer not to go into the details of

all the CANopen tasks executed from within. For further optimization, an applica-

tion can bypass calling this function and directly invoke the dedicated CANopen

tasks: "ProcessStackRx()" and "ProcessStackTick()".

• Sub-task "ProcessStackRx()": This task handles processing a received

CANopen message. For an optimized call, it would ideally be initiated di-

rectly from the CAN receive interrupt or triggered by some signal set in

the CAN receive interrupt.

• Sub-task "ProcessStackTick()": This task checks if the process data to be

transmitted has changed (or was triggered for transmission) and if any

actions based on the millisecond timer need to be taken. The most effi-

cient way to call this is only after process data has changed or the milli-

second timer has incremented.

This approach provides a more refined control over the execution of specific tasks

within the CANopen stack, allowing for more precise tuning of performance and

responsiveness.

4.4 Bringing together CAN Driver, CANopen Stack
and Application

On most 32-bit-based microcontrollers, the enhancements discussed so far are

suitable for bringing the total response time down to a range of 10ms to "a few

milliseconds." This can be achieved without requiring optimizations that lead to a

fully custom implementation that might be challenging to maintain. These optimi-

zations were confined to leveraging individually triggered CANopen stack pro-

cesses when needed.

In general, this can be taken further. However, making changes at such an intrin-

sic level in a system can make it much more challenging to maintain or port to a

different architecture when necessary. Therefore, the following is more to

32

illustrate "what is theoretically possible," pushing optimizations beyond the point

where a system remains easy to test, maintain, and port.

On the lowest hardware level, review if your CAN controller is configured to di-

rectly create a CAN receive interrupt with the reception of the SYNC message and

if you can easily detect the difference to any other CANopen message (e.g. own

filter/receive buffer).

The only reasonable CANopen PDO communication mode for further real-time im-

provements would be the CANopen SYNC mode. If that is used and we concen-

trate on optimizing it, then the previous other optimizations might become re-

dundant.

Focusing on SYNC optimization would require us to modify the CAN receive inter-

rupt service routine to directly call the CANopen stack function(s) responsible for

SYNC handling when a SYNC signal is received. In the case of Micro CANopen Plus,

this would be the function “HandleSync()”. When executing this from within the

interrupt service routine, please keep in mind:

• Not to store this SYNC in the regular receive queue (we already process

it).

• That for both SYNC-related transmit and receive data, call back functions

to the application will be called—still executing at the interrupt service

level.

• When using an RTOS, a better solution would be to set a trigger signal in

the interrupt that SYNC was received, subsequently triggering the execu-

tion task immediately after the interrupt has completed.

With such a modification, a response time within a millisecond is achievable. If all

devices participating in the SYNC communication implement the SYNC handling

with equal optimization, the variation among the devices (e.g. when they each ap-

ply their outputs synchronusly) can be as low as a few microseconds.

Nevertheless, these are extreme values that have been observed to work in test

and lab environments. For real-world applications demanding such short response

or sync times, careful testing would be required to ensure that these targets can

be reached under all realistic circumstances.

33 From Theory to Practice: CANopen Source Code Configuration

4.5 Final Conclusion: Navigating Complexity
through Strategic Choices

The journey through this four-

part series has provided an in-

depth exploration of the com-

ponents that shape embed-

ded real-time communication.

From hardware selection to

advanced optimization tech-

niques, the underlying theme

that resonates is the pivotal

role of response times in de-

termining every aspect of sys-

tem design and configuration.

1. Hardware Selection: The required response times dictate the hardware

capabilities needed, influencing decisions on modules, possibly micro-

controllers and other essential components.

2. Operating System Considerations: Whether working with an RTOS or im-

plementing a more specific, bespoke system, the response times heavily

influence how the operating system needs to be configured.

3. Network Technologies: Depending on the required throughput and

speed, different network protocols and technologies must be taken into

consideration. As an example, this series looked at the specifics of CANo-

pen and its configurations, illustrating the nuanced choices required to

meet different application demands.

4. Optimization Choices: Perhaps one of the most profound insights is the

realization that optimization is not a one-size-fits-all approach. Depend-

ing on the required response times, certain optimizations become essen-

tial, while others can be bypassed. It's a matter of fine-tuning, under-

standing what needs to be harnessed, and what can be left untouched

without affecting performance.

5. Strategic Ignorance: Contrary to the instinct to utilize every possible ad-

vantage, there are instances where the time frame allows for the

34

deliberate ignoring of certain optimizations. Not every register provided

by a network controller needs to be exploited; it's a balance between

performance and the demands of the particular application.

Through this series, I have illuminated the complex interplay of hardware, operat-

ing systems, and network technologies, all governed by the essential factor of re-

sponse times. The insights offered serve as a guide for making strategic choices in

system design, highlighting the importance of tailored optimization and thought-

ful decision-making. These principles enable you to craft robust and efficient real-

time communication systems, suited to your application demands.

35 Developing and Testing Real-Time CANopen solutions

5 Developing and Testing Real-Time

CANopen solutions

In this chapter, we will introduce you to the functionalities and utilities of EmSA's

comprehensive range of products in the context of real-time CANopen and CANo-

pen FD applications. We offer various utilities and tools for configuration and

analysis as well as hardware and software:

• Configuring and Diagnosing Real-Time Behavior:
EmSA's sophisticated diagnostic tools aid you in configuring and diagnos-
ing CANopen systems for their specific real-time behavior.

• Implementing CANopen Nodes with Specific Real-Time Requirements:
Using our CANopen hardware modules, you can directly design I/O mod-
ules with basic digital or analog inputs and outputs. Our CANopen source
code products can be used to implement customized CANopen devices.

5.1 Context of total Real-Time response times

For all timings and measurements further down, you have to keep in mind that

when monitoring CANopen communication and doing a timing analysis based on

these recordings, you only see a part of the total picture. We can measure the ac-

curacy of a cycle time for transmission – but we do not know how long it took to

36

process that data internally. Specifically, the time for input data changing until a

CANopen message is triggered is unknown.

If you need this timing very accurately, then an oscilloscope with CAN interpreta-

tion works well. Ensure that you are monitoring the input signal and the CAN

lines. On signal change on the input you can then measure the time until you see

the corresponding PDO.

Another alternative to get an approximation of total processing times is to con-

nect the inputs and outputs of a single CANopen device to each other. You can

then trigger the PDO to the output and wait for the “responding” PDO that con-

tains the input data triggered by the change of that output. The timing between

these two PDOs can give you an estimation of the processing times involved.

5.2 CANopen Architect:
Managing CANopen Configurations

In CANopen, real-time related communication will be PDO based. No matter if cy-

clic or synced PDOs are used, CANopen Architect product allows you to quickly

generate and modify PDO configurations.

At the heart of CANopen based real-time communication, PDOs (Process Data Ob-

jects) are used, which serve as the cornerstone for transferring data quickly and

efficiently within a CANopen network.

The CANopen Architect stands as a central tool in managing these configurations.

Whether you are working with event-driven, cyclic or synced PDOs, this tool facili-

tates quick generation and modification of PDO configurations.

For each device, all PDO configurations can be made based on our PDO configura-

tion table as shown in the screen shot. This table provides quick access to all con-

figurable PDO communication and mapping parameters.

PDO CONFIGURATION WITH CANOPEN ARCHITECT

https://canopenarchitect.com/

37 Developing and Testing Real-Time CANopen solutions

5.3 CANopen Magic:
Loading and Testing CANopen Configurations

CANopen Magic serves as a vital utility in the CANopen environment, not only for

loading of configurations into devices, but also for quickly testing single parame-

ters, without the need for a complete re-configuration. Configurations can be ver-

ified quickly based on the same PDO configuration table used by CANopen Archi-

tect, giving you “live” access to these configurations.

PDO CONFIGURATION VIEWS

In addition, CANopen magic provides the ability to monitor and record all live

CANopen traffic, including a high-resolution one-microsecond timestamp. This

functionality ensures precise monitoring and analysis, allowing you to verify if re-

sponse times are within the require time windows.

https://canopenmagic.com/

38

LIVE TRACE: HERE PDOS AND TIMING

When the configuration

information provided

includes details about

the individual signals

mapped into PDOs, a

graph can be generate

conating a graphical

representation of the

selected signal, includ-

ing timing information

(when the signal

changed).

5.4 CANopen LogXaminer:
Long-term Analysis

The CANopen LogXaminer is an indispensable tool for analyzing long log files or

trace recordings (files with more than 1 million entries get broken up). Its core

strength lies in the analysis of cycle and response times in depth. It can accurately

identify the minimum and maximum cycle times for PDOs and Heartbeats, and

similarly, it pinpoints the minimum and maximum response times for SDOs. The

timer resolution depends on the resolution of the timer used by the utility gener-

ating the log file in the first place. Ensure that this resolution is good enough for

your requirements. Good tools provide a timestamp based on Microseconds.

39 Developing and Testing Real-Time CANopen solutions

CANOPEN LOGXAMINER ANALYSIS

In summary, CANopen LogXaminer specifically helps revealing the worst-case tim-

ing scenarios happening in the duration of the log file. Results are summarized for

each node (only reviewing the TPDOs and SDO responses generated by that

node).

5.5 CANopenIA Modules:
Basic Profile CANopen devices

The CANopenIA System on Modules (SoM) is a

robust solution engineered to facilitate the devel-

opment of efficient real-time capable CANopen

I/O nodes. Its compact design of flexible and re-

sponsive I/O nodes, significantly reducing the de-

velopment time while ensuring reliable perfor-

mance. Internal processing times for digital I/O

are down to 15 Microseconds. Depending on con-

figuration, the module is well suited to fulfil also real-time demands going down

to single milliseconds.

https://canopenia.com/index.php/en/products/modules

40

5.6 Micro CANopen Source Code:
Custom CANopen devices

Our Micro CANopen source code is well suited

for implementing real-time capable CANopen

devices, specific setting examples were listed

in the previous chapter. Although this CANo-

pen stack implementation is also available as a

library, only the source code version offers all

optimization offers mentioned.

Using this on an Arm Cortex-M microcontroller

running at 80 Mhz or something with similar

performance allows you to build real-time ca-

pable CANopen nodes.

https://canopenstore.com/collections/embedded-code/products/microcanopen-plus

